scholarly journals Biopolymer Solution Evaluation Methodology: Thermal and Mechanical Assessment for Enhanced Oil Recovery with High Salinity Brines

Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 339 ◽  
Author(s):  
Mohammad Al-Saleh ◽  
Abdirahman Yussuf ◽  
Mohammad Jumaa ◽  
Abbas Hammoud ◽  
Tahani Al-Shammari

The methodology to study an eco-friendly and non-toxic, Schizophyllan, biopolymer for enhanced oil recovery (EOR) polymer flooding is described. The methodology is divided into two parts; the first part estimates the molar concentration of the biopolymer, which is needed to prepare the biopolymer solution with optimal viscosity. This is required to improve the sweep efficiency for the selected reservoir in Kuwait. The second part of this generalized methodology evaluates the biopolymer solution capability to resist degradation and maintain its essential properties with the selected reservoir conditions. The evaluation process includes thermal and mechanical assessment. Furthermore, to study the biopolymer solution behavior in both selected reservoir and extreme conditions, the biopolymer solution samples were prepared using 180 g/L and 309 g/L brine. It was found that the prepared biopolymer solution demonstrated great capability in maintaining its properties; and therefore, can be introduced as a strong candidate for EOR polymer flooding with high salinity brines.

2020 ◽  
Vol 20 (6) ◽  
pp. 1382
Author(s):  
Tengku Amran Tengku Mohd ◽  
Shareena Fairuz Abdul Manaf ◽  
Munawirah Abd Naim ◽  
Muhammad Shafiq Mat Shayuti ◽  
Mohd Zaidi Jaafar

Polymer flooding could enhance the oil recovery by increasing the viscosity of water, thus, improving the mobility control and sweep efficiency. It is essential to explore natural sources of polymer, which is biologically degradable and negligible to environmental risks. This research aims to produce a biodegradable polymer from terrestrial mushroom, analyze the properties of the polymer and investigate the oil recovery from polymer flooding. Polysaccharide biopolymer was extracted from mushroom and characterized using Fourier Transform Infrared Spectrometer (FTIR), while the polymer viscosity was investigated using an automated microviscometer. The oil recovery tests were conducted at room temperature using a sand pack model. It was found that polymer viscosity increases with increasing polymer concentration and decreases when increase in temperature, salinity, and concentration of divalent ions. The oil recovery tests showed that a higher polymer concentration of 3000 ppm had recovered more oil with an incremental recovery of 25.8% after waterflooding, while a polymer concentration of 1500 pm obtained incremental 22.2% recovery of original oil in place (OOIP). The oil recovery from waterflooding was approximately 25.4 and 24.2% of the OOIP, respectively. Therefore, an environmentally friendly biopolymer was successfully extracted, which is potential for enhanced oil recovery (EOR) application, but it will lose its viscosity performance at certain reservoir conditions.


2013 ◽  
Vol 807-809 ◽  
pp. 2607-2611
Author(s):  
Byung In Choi ◽  
Moon Sik Jeong ◽  
Kun Sang Lee

Water salinity and hardness have been regarded as main limitation for field application of polymer floods. It causes not only reduction of polymer concentration, but also injectivity loss in the near wellbore. Based on the mathematical and chemical theory, extensive numerical simulations were conducted to investigate performance of polymer floods in the high-salinity reservoirs. According to results from simulations, the high salinity reduces the viscosity of polymer in contacting area. That causes a poor sweep efficiency of polymer flooding. Moreover, the presence of divalent cations makes the project of polymer flooding worse. That is because of excessively increased bottom-hole pressure in injection well by the precipitation of polymer. The quantitative assessment of polymer floods needs to be required before field application. Therefore, the results in this paper are helpful for optimal polymer flooding design under harsh reservoir conditions.


SPE Journal ◽  
2020 ◽  
pp. 1-17
Author(s):  
Yang Zhao ◽  
Shize Yin ◽  
Randall S. Seright ◽  
Samson Ning ◽  
Yin Zhang ◽  
...  

Summary Combining low-salinity-water (LSW) and polymer flooding was proposed to unlock the tremendous heavy-oil resources on the Alaska North Slope (ANS). The synergy of LSW and polymer flooding was demonstrated through coreflooding experiments at various conditions. The results indicate that the high-salinity polymer (HSP) (salinity = 27,500 ppm) requires nearly two-thirds more polymer than the low-salinity polymer (LSP) (salinity = 2,500 ppm) to achieve the target viscosity at the condition of this study. Additional oil was recovered from LSW flooding after extensive high-salinity-water (HSW) flooding [3 to 9% of original oil in place (OOIP)]. LSW flooding performed in secondary mode achieved higher recovery than that in tertiary mode. Also, the occurrence of water breakthrough can be delayed in the LSW flooding compared with the HSW flooding. Strikingly, after extensive LSW flooding and HSP flooding, incremental oil recovery (approximately 8% of OOIP) was still achieved by LSP flooding with the same viscosity as the HSP. The pH increase of the effluent during LSW/LSP flooding was significantly greater than that during HSW/HSP flooding, indicating the presence of the low-salinity effect (LSE). The residual-oil-saturation (Sor) reduction induced by the LSE in the area unswept during the LSW flooding (mainly smaller pores) would contribute to the increased oil recovery. LSP flooding performed directly after waterflooding recovered more incremental oil (approximately 10% of OOIP) compared with HSP flooding performed in the same scheme. Apart from the improved sweep efficiency by polymer, the low-salinity-induced Sor reduction also would contribute to the increased oil recovery by the LSP. A nearly 2-year pilot test in the Milne Point Field on the ANS has shown impressive success of the proposed hybrid enhanced-oil-recovery (EOR) process: water-cut reduction (70 to less than 15%), increasing oil rate, and no polymer breakthrough so far. This work has demonstrated the remarkable economical and technical benefits of combining LSW and polymer flooding in enhancing heavy-oil recovery.


SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 249-259 ◽  
Author(s):  
Yunshen Chen ◽  
Amro S. Elhag ◽  
Benjamin M. Poon ◽  
Leyu Cui ◽  
Kun Ma ◽  
...  

Summary To improve sweep efficiency for carbon dioxide (CO2) enhanced oil recovery (EOR) up to 120°C in the presence of high-salinity brine (182 g/L NaCl), novel CO2/water (C/W) foams have been formed with surfactants composed of ethoxylated amine headgroups with cocoalkyl tails. These surfactants are switchable from the nonionic (unprotonated amine) state in dry CO2 to cationic (protonated amine) in the presence of an aqueous phase with a pH less than 6. The high hydrophilicity in the protonated cationic state was evident in the high cloudpoint temperature up to 120°C. The high cloud point facilitated the stabilization of lamellae between bubbles in CO2/water foams. In the nonionic form, the surfactant was soluble in CO2 at 120°C and 3,300 psia at a concentration of 0.2% (w/w). C/W foams were produced by injecting the surfactant into either the CO2 phase or the brine phase, which indicated good contact between phases for transport of surfactant to the interface. Solubility of the surfactant in CO2 and a favorable C/W partition coefficient are beneficial for transport of surfactant with CO2-flow pathways in the reservoir to minimize viscous fingering and gravity override. The ethoxylated cocoamine with two ethylene oxide (EO) groups was shown to stabilize C/W foams in a 30-darcy sandpack with NaCl concentrations up to 182 g/L at 120°C and 3,400 psia, and foam qualities from 50 to 95%. The foam produces an apparent viscosity of 6.2 cp in the sandpack and 6.3 cp in a 762-μm-inner-diameter capillary tube (downstream of the sandpack) in contrast with values well below 1 cp without surfactant present. Moreover, the cationic headgroup reduces the adsorption of ethoxylated alkyl amines on calcite, which is also positively charged in the presence of CO2 dissolved in brine. The surfactant partition coefficients (0 to 0.04) favored the water phase over the oil phase, which is beneficial for minimizing losses of surfactant to the oil phase for efficient surfactant usage. Furthermore, the surfactant was used to form C/W foams, without forming stable/viscous oil/water (O/W) emulsions. This selectivity is desirable for mobility control whereby CO2 will have low mobility in regions in which oil is not present and high contact with oil at the displacement front. In summary, the switchable ethoxylated alkyl amine surfactants provide both high cloudpoints in brine and high interfacial activities of ionic surfactants in water for foam generation, as well as significant solubilities in CO2 in the nonionic dry state for surfactant injection.


2014 ◽  
Vol 548-549 ◽  
pp. 1876-1880 ◽  
Author(s):  
T.A.T. Mohd ◽  
A. H. M. Muhayyidin ◽  
Nurul Aimi Ghazali ◽  
M.Z. Shahruddin ◽  
N. Alias ◽  
...  

Foam flooding is an established approach in Enhanced Oil Recovery (EOR) to recover a significant quantity of the residual oil left in the reservoir after primary and secondary recovery. However, foam flooding faces various problems due to low viscosity effect, which reduces its efficiency in recovering oil. Using surfactant to stabilize CO2foam may reduce mobility and improve areal and vertical sweep efficiency, but the potential weaknesses are such that high surfactant retention in porous media and unstable foam properties under high temperature reservoir conditions. Nanoparticles have higher adhesion energy to the fluid interface, which potentially stabilize longer lasting foams. Thus, this paper is aimed to investigate the CO2foam stability and mobility characteristics at different concentration of nanosilica, brine and surfactant. Foam generator has been used to generate CO2foam and analyze its stability under varying nanosilica concentration from 100 - 5000 ppm, while brine salinity and surfactant concentration ranging from 0 to 2.0 wt% NaCl and 0 – 10000 ppm, respectively. Foam stability was investigated through observation of the foam bubble size and the reduction of foam height inside the observation tube. The mobility was reduced as the concentration of nanosilica increased with the presence of surfactant. After 150 minutes of observation, the generated foam height reduced by 10%. Liquid with the presence of both silica nanoparticles and surfactant generated more stable foam with lower mobility. It can be concluded that the increase in concentration of nanosilica and addition of surfactant provided significant effects on the foam stability and mobility, which could enhance oil recovery.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3732 ◽  
Author(s):  
Yaohao Guo ◽  
Lei Zhang ◽  
Guangpu Zhu ◽  
Jun Yao ◽  
Hai Sun ◽  
...  

Water flooding is an economic method commonly used in secondary recovery, but a large quantity of crude oil is still trapped in reservoirs after water flooding. A deep understanding of the distribution of residual oil is essential for the subsequent development of water flooding. In this study, a pore-scale model is developed to study the formation process and distribution characteristics of residual oil. The Navier–Stokes equation coupled with a phase field method is employed to describe the flooding process and track the interface of fluids. The results show a significant difference in residual oil distribution at different wetting conditions. The difference is also reflected in the oil recovery and water cut curves. Much more oil is displaced in water-wet porous media than oil-wet porous media after water breakthrough. Furthermore, enhanced oil recovery (EOR) mechanisms of both surfactant and polymer flooding are studied, and the effect of operation times for different EOR methods are analyzed. The surfactant flooding not only improves oil displacement efficiency, but also increases microscale sweep efficiency by reducing the entry pressure of micropores. Polymer weakens the effect of capillary force by increasing the viscous force, which leads to an improvement in sweep efficiency. The injection time of the surfactant has an important impact on the field development due to the formation of predominant pathway, but the EOR effect of polymer flooding does not have a similar correlation with the operation times. Results from this study can provide theoretical guidance for the appropriate design of EOR methods such as the application of surfactant and polymer flooding.


SPE Journal ◽  
2014 ◽  
Vol 19 (06) ◽  
pp. 1024-1034 ◽  
Author(s):  
Jun Lu ◽  
Christopher Britton ◽  
Sriram Solairaj ◽  
Pathma J. Liyanage ◽  
Do Hoon Kim ◽  
...  

Summary A new class of surfactants has been developed and tested for chemical enhanced oil recovery (EOR) that shows excellent performance under harsh reservoir conditions. These novel Guerbet alkoxy carboxylate (GAC) surfactants fulfill this need by providing large, branched hydrophobes; flexibility in the number of alkoxylate groups; and stability in both alkaline and nonalkaline environments at temperatures up to at least 120°C. The new carboxylate surfactants were recently manufactured at a cost comparable to other commercial EOR surfactants by use of commercially available feedstocks. A formulation containing the combination of a carboxylate surfactant and a sulfonate cosurfactant resulted in a synergistic interaction that has the potential to reduce the total chemical cost further. One can obtain both ultralow interfacial tension (IFT) with the oils and a clear aqueous solution (even under harsh conditions such as high salinity, high hardness, and high temperature with or without alkali) with these new large-hydrophobe alkoxy carboxylate surfactants. Both sandstone and carbonate corefloods were conducted, with excellent results. Formulations were developed for both active oils (contains naturally occurring carboxylic acids) and inactive oils (oils that do not produce sufficient amounts of soap/carboxylic acid), with excellent results.


2018 ◽  
Vol 15 (30) ◽  
pp. 380-386
Author(s):  
Y. V. SAVINYKH ◽  
L. D. LANG

Polymer flooding is technologically simple and highly effective method of enhanced oil recovery. The method is based on adding a small amount of polymer in conventional water flooding of oil reservoirs. The increase in viscosity and the reduction of the mobility of injected water are to equalize the displacement front by slowing the moving of water in the highly permeable zones and restricting the formation of water finger. These factors help to increase the sweep efficiency and oil-water displacement efficiency during flooding. Polymer flooding has been used successfully in clastic and carbonate reservoirs, as well as in low-permeability reservoirs such as a fractured basement. However, most of the current polymer gel used for control water flows are decayed by a high content of ions Ca2+ and Mg2+ in formation water or in injected water. Similarly, polymer gels lose their stability at high reservoir temperature (above 70°C). Developing water-soluble polymer, which does not change their rheological properties under high salinity and high temperature (over 100°C), is very important when producing offshore, where sea water is commonly used for flooding (high salinity of 30-40 g/L).


Author(s):  
Kelly Lúcia Nazareth Pinho de Aguiar ◽  
Luiz Carlos Magalhães Palermo ◽  
Claudia Regina Elias Mansur

Due to the growing demand for oil and the large number of mature oil fields, Enhanced Oil Recovery (EOR) techniques are increasingly used to increase the oil recovery factor. Among the chemical methods, the use of polymers stands out to increase the viscosity of the injection fluid and harmonize the advance of this fluid in the reservoir to provide greater sweep efficiency. Synthetic polymers based on acrylamide are widely used for EOR, with Partially Hydrolyzed Polyacrylamide (PHPA) being used the most. However, this polymer has low stability under harsh reservoir conditions (High Temperature and Salinity – HTHS). In order to improve the sweep efficiency of polymeric fluids under these conditions, Hydrophobically Modified Associative Polymers (HMAPs) and Thermo-Viscosifying Polymers (TVPs) are being developed. HMAPs contain small amounts of hydrophobic groups in their water-soluble polymeric chains, and above the Critical Association Concentration (CAC), form hydrophobic microdomains that increase the viscosity of the polymer solution. TVPs contain blocks or thermosensitive grafts that self-assemble and form microdomains, substantially increasing the solution’s viscosity. The performance of these systems is strongly influenced by the chemical group inserted in their structures, polymer concentration, salinity and temperature, among other factors. Furthermore, the application of nanoparticles is being investigated to improve the performance of injection polymers applied in EOR. In general, these systems have excellent thermal stability and salinity tolerance along with high viscosity, and therefore increase the oil recovery factor. Thus, these systems can be considered promising agents for enhanced oil recovery applications under harsh conditions, such as high salinity and temperature. Moreover, stands out the use of genetic programming and artificial intelligence to estimate important parameters for reservoir engineering, process improvement, and optimize polymer flooding in enhanced oil recovery.


Sign in / Sign up

Export Citation Format

Share Document