scholarly journals Modeling and Simulation of the Absorption of CO2 and NO2 from a Gas Mixture in a Membrane Contactor

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 441 ◽  
Author(s):  
Nayef Ghasem

The removal of undesirable compounds such as CO2 and NO2 from incineration and natural gas is essential because of their harmful influence on the atmosphere and on the reduction of natural gas heating value. The use of membrane contactor for the capture of the post-combustion NO2 and CO2 had been widely considered in the past decades. In this study, membrane contactor was used for the simultaneous absorption of CO2 and NO2 from a mixture of gas (5% CO2, 300 ppm NO2, balance N2) with aqueous sodium hydroxide solution. For the first time, a mathematical model was established for the simultaneous removal of the two undesired gas solutes (CO2, NO2) from flue gas using membrane contactor. The model considers the reaction rate, and radial and axial diffusion of both compounds. The model was verified and validated with experimental data and found to be in good agreement. The model was used to examine the effect of the flow rate of liquid, gas, and inlet solute mole fraction on the percent removal and molar flux of both impurity species. The results revealed that the effect of the liquid flow rate improves the percent removal of both compounds. A high inlet gas flow rate decreases the percent removal. It was possible to obtain the complete removal of both undesired compounds. The model was confirmed to be a dependable tool for the optimization of such process, and for similar systems.

Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


2020 ◽  
Vol 20 (7) ◽  
pp. 2915-2927
Author(s):  
Chen Lan ◽  
Jingan Chen ◽  
Jianyang Guo ◽  
Jingfu Wang

Abstract Bubble plumes are a popular hypolimnetic reaeration technique in deep-water reservoirs since they have the advantage of delivering direct reaeration to the hypolimnion. Improving the understanding of the integrated reaeration processes is beneficial to optimize the reaeration capacity of the aeration or oxygenation system. In this study, the discrete bubble model was first employed to design an oxygenation system for a sub-deep reservoir (the Aha Reservoir, southwest China, with water depths of 10–30 m). A new approach involving the discrete bubble model was used to determine the initial bubble size of the bubble plume applied. The intrusion models were demonstrated to be useful for designing the gas flow rate of the reaeration system. Using the intrusion models, we predicted the intrusion thickness and intrusion distance during operation for the first time. Subsequently, we verified the predictions and produced more realistic empirical formulas. At present, reports about recommendations on initial bubble size and gas flow rate are rare, and practical verification is absent. Taking the Aha Reservoir as an example, the initial bubble radius of 1 mm and the gas flow rate of 20 m3·h−1 were recommended for bubble plume oxygenation and were found to be successful in the field. Our understanding of the reaeration processes during the operation of the bubble plume system is far from comprehensive, but this study serves to highlight the potential of the discrete bubble model and the intrusion models for designing a bubble plume system in an individual lake.


EKOLOGIA ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 45-51
Author(s):  
. Sutanto ◽  
Ade Heri Mulyati ◽  
. Hermanto

Drilling natural gas contains water vapor (H2O) and contaminant gases such as CO2 and H2S which must be removed because it reduced the calorie value of the product. H2S gas is also corrosive, easily damaging equipment so that it increased maintenance costs. The process of removing CO2 and H2S gas uses MDEA (methyl diethanolamine). This study aims to determine the optimal concentration and flow rate of absorbent methyl diethanolamine (MDEA) to absorb H2S in the plant I gas flow in Energy Equity Epic (Sengkang) Pty.Ltd. The study was carried out with a steady MDEA mix absorbent flow rate (50% pure amine and 50% demineralization water) fixed at 13 US Gallons per minute flowing continuously at the upper absorber inlet, sour gas flow rate, at the bottom of the absorber inlet with variations in the flow gas namely 7,9,11,13,15,17 MMSCFD and is contacted with amine solution counter-current. Purified natural gas (sweet gas) produced from the top absorber column outlet with an H2S content below 10 ppm. The results showed that the greater the flow rate of gas inlet, the greater the acid gas absorbed. The  amount  of gas  entering and  exiting gas follows the  equation        y = 0.003 x - 2.2537. The ability of the amine solution to absorb H2S follows the logarithmic equation y = 0.167 ln (x) + 101.02 with a value of R = 0.9857, y is H2S absorbed by the amine solution and x is the H2S rate.


Author(s):  
Salavat K. Sibagatullin ◽  
◽  
Aleksandr S. Kharchenko ◽  
Vitaly A. Beginyuk ◽  
Valentin N. Selivanov ◽  
...  

2020 ◽  
pp. 44-50
Author(s):  
O. E. Seredyuk ◽  
N. M. Malisevich

The article is devoted to the study of the influence of the qualitative and quantitative composition of gas environments on the flame temperature of the combusted gas at different values of gas flow rate and changes volume ratio gas-air in its combustion. The functional scheme of the developed labo­ratory stand (Fig. 1), which provides temperature measurement during combustion of natural gas or propane-butane mixture, is considered. The design of the developed burner is described and the expe­rimental researches are carried out when measuring the flame temperature of the combusted gas during the operation of the laboratory stand. The opera­ting conditions of different thermocouples in measuring the temperature of the flared gas are investigated (Fig. 2). The temperature instability in the lower and upper flames was experimentally determined (Fig. 3) and its difference from the reference data [12, 13]. The measurement of the flame temperature with a uncased thermocouple and two thermocouples of different types with protective housings is reali­zed. Methodical error of temperature measurement by different thermocouples was estimated (Fig. 5). An algorithm for the implementation of measurement control in determining the heat of combustion of natural gas according to the patented method is outlined [11]. Experimental studies of temperature changes of combusted gas mixtures at different gas flow rates and different ratios with air, which is additionally supplied for gas combustion, were carried out (Figs. 4, 7). The computer simulation (Figs. 6, 8) of the change in the flame temperature was performed on the basis of the experimental data, which allowed to obtain approximate equations of the functional dependence of the flame temperature on the gas flow rate and the ratio of the additional air and gas consumption. The possibility of realization of the device of express control of the heating value of natural gas by measuring the combustion temperature of the investigated gases, which is based on the expe­rimentally confirmed increase in the flame temperature of the investigated gases with increasing their calorific value, is substantiated (Fig. 9). The necessity of further investigation of the optimization design characteristics of the burner and the operating conditions of combustion of the gases under rapid cont­rol of their combustion heat was established (Fig. 9).


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ziyi Qu ◽  
Li Zhang ◽  
Yunfei Yan ◽  
Shunxiang Ju

Hollow fiber membrane contactor is a new, highly efficient, and the most promising technology for CO2absorption in flue gas. There is still SO2that exists in the flue gas after desulfurization tower of power plant. This paper studied the influence of SO2on CO2absorption characteristic in flue gas by hollow fiber membrane contactor with absorbent of EDA, EDA + MEA (0.6 : 0.4), and EDA + MEA + PZ (0.4 : 0.4 : 0.2). The influences of SO2concentration, cycle absorption and desorption characteristic of absorbent, absorbent concentration, and liquid-gas flow rate ratio are studied to analyze the influence of SO2on CO2absorption characteristic. The appropriate absorbent composition ratio and appropriate parameter range that can inhibit the influence of SO2are proposed by studying the hybrid sorbent with activating agent, appropriate absorbent concentration, and ratio of liquid-gas flow rate. Among the three kinds of absorbents, EDA + MEA + PZ (0.4 : 0.4 : 0.2) had the best tolerance ability to SO2and the highest efficiency. With comprehensive consideration of CO2removal efficiency and operating cost, under the condition of 1000 ppm SO2, the appropriate concentration and liquid-gas flow rate ratio of EDA, EDA + MEA, and EDA + MEA + PZ are proposed.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1868 ◽  
Author(s):  
Ehsan Barekat-Rezaei ◽  
Mahmood Farzaneh-Gord ◽  
Alireza Arjomand ◽  
Mohsen Jannatabadi ◽  
Mohammad Ahmadi ◽  
...  

In many industrial plants including petrochemicals and refineries, raw hydrocarbons (mostly flammable gas) are released during unplanned operations. These flammable gases (usually called flare gases) are sent to a combustor and the process is called flaring. Flaring wastes energy and produces environmental pollution. Consequently, recovering the flare gases is an important subject in these industries. In this work, an economical and technical analysis is presented for the production of valuable products, namely, liquefied natural gas and natural gas liquids from flare gas. The flare gas of Fajr Jam refinery, a refinery located in the south part of Iran, is selected as a case study. One of the issues in recovering flare gases is the nonconstant flow rate of these gases. For this reason, an auxiliary natural gas flow rate is employed to have a constant feed for the flare recovery process. The Poly Refrigerant Integrated Cycle Operations (PRICO) refrigeration cycle is employed for producing liquefied natural gas and natural gas liquids. In the PRICO cycle, the mixed refrigerant is used as the working fluid. The other issue is the existence of H2S in the flare gases. The main idea is that the flare gas components, including H2S, have different boiling points and it is possible to separate them. Consequently, flare gases are separated into several parts during a number of successive cooling and heating stages and passing through phase separators. It is shown that the proposed flare gas recovery process prevents burning of 12 million cubic meters of the gases with valuable hydrocarbons, which is almost 70% of the current flare gases. Furthermore, about 11,000 tons of liquefied natural gas and 1230 tons of natural gas liquids are produced in a year. Finally, the economic evaluation shows a payback period of about 1.6 years.


The use of natural gas in several countries, especially in Indonesia is essential. In gas distribution, every industry and household will not be separated from the measurement system that aims to find out how much natural gas has been used. For this reason, the use of a gas flow meter is necessary. There are several types of gas flow meter can be used in measuring the gas volume. Some types of gas flow meters are gas turbine meters, rotary gas meters and diaphragm gas meters. The primary difference of each type of gas flow meter is the pressure capacity and the speed of the gas flow through it. Flow meter gas turbine is one type of gas flow rate measuring device. There are moving parts consisting of a propeller whose rotation speed is proportional to the flow rate through the flow meter. The type of gas turbine meter is Fluxi 2000/TZ. Fluxi 2000/TZ is designed to measure natural gas and various non-corrosive gases. This tool can be used to measure low gas flow and high gas flow. This tool can also be used to measure flow under various pressure conditions. Corus is the name of the type of gas volume converter. Corus is one instrument that supports the reading process of various gas meters, and one of them is a gas turbine meter. Corus is designed to achieve high levels of performance and accuracy from robust electronic equipment so that the results of reading the fluid volume available on the gas turbine meter can be calculated more accurately regard to the amount of temperature, pressure and compressibility. The working principle and characteristics of the two instruments make the measurements more accurate.


2014 ◽  
Vol 68 (7) ◽  
Author(s):  
Bożenna Kawalec-Pietrenko ◽  
Piotr Rybarczyk

AbstractIn the paper, simultaneous removal of Al(III) and Cu(II) from dilute aqueous solutions by ion and precipitate flotation methods is investigated. Influence of the pH of the initial solution, the surface active collector concentration and the gas flow rate on the final removal ratio and the course of ion and precipitate flotations is presented. The results show that simultaneous flotations of Al(OH)3 and Cu(OH)2 insoluble species occur allowing to achieve their almost complete removal in the pH range between 7 and 9. An increase of the surface active agent concentration causes a decrease of the final removal ratio as well as of the flotation rate constant. An increase of the gas flow rate results in an increase of ion and precipitate flotation rates.


Sign in / Sign up

Export Citation Format

Share Document