scholarly journals Experimental Study on the Effect of Polymer Injection Timing on Oil Displacement in Porous Media

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 93 ◽  
Author(s):  
Leiting Shi ◽  
Shijie Zhu ◽  
Zhidong Guo ◽  
Wensen Zhao ◽  
Xinsheng Xue ◽  
...  

It has been proven that polymer injection at early times is beneficial to offshore heavy oil recovery. It is of significant importance to optimize the polymer injection timing and decide the residual oil distribution after polymer flooding. Aiming at a specific offshore heavy oil reservoir in Bohai, China, the optimum polymer injection timing is investigated through laboratory experiments. The influence of polymer injection timing on oil displacement and remaining oil distribution is analyzed by combining macroscopic and microscopic flooding experiments. The results reveal that the optimum polymer injection timing should be close to the water breakthrough, i.e., just before the waterflooding front reaches the outlet of the core. In addition, the waterflooding front position is analytically solved by using the Buckley–Leverett method and verified by experimental results, which supply an approach to predict the polymer injection timing. When polymer is injected before the waterflood front reaches the outlet of the core, the mobility control ability of polymer solution can reduce the fraction of bypassed volume of the reservoir by waterflooding. The early injected polymer mainly enters the high permeability zone, which works positively in two ways. Firstly, it improves the oil displacement efficiency of the high permeability zone. Secondly, the polymer establishes a flow resistance in the high permeable zones, thus improving the sweep efficiency in the low and medium permeability zones. However, our residual oil distribution experiments illustrate that there is still a large amount of oil remaining in the low and medium permeability zones. Therefore, it is necessary to explore additional EOR methods to recover the abundant residual oil.

SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2243-2259 ◽  
Author(s):  
Pengfei Dong ◽  
Maura Puerto ◽  
Guoqing Jian ◽  
Kun Ma ◽  
Khalid Mateen ◽  
...  

Summary Oil recovery in heterogeneous carbonate reservoirs is typically inefficient because of the presence of high-permeability fracture networks and unfavorable capillary forces within the oil-wet matrix. Foam, as a mobility-control agent, has been proposed to mitigate the effect of reservoir heterogeneity by diverting injected fluids from the high-permeability fractured zones into the low-permeability unswept rock matrix, hence improving the sweep efficiency. This paper describes the use of a low-interfacial-tension (low-IFT) foaming formulation to improve oil recovery in highly heterogeneous/fractured oil-wet carbonate reservoirs. This formulation provides both mobility control and oil/water IFT reduction to overcome the unfavorable capillary forces preventing invading fluids from entering an oil-filled matrix. Thus, as expected, the combination of mobility control and low-IFT significantly improves oil recovery compared with either foam or surfactant flooding. A three-component surfactant formulation was tailored using phase-behavior tests with seawater and crude oil from a targeted reservoir. The optimized formulation simultaneously can generate IFT of 10−2 mN/m and strong foam in porous media when oil is present. Foam flooding was investigated in a representative fractured core system, in which a well-defined fracture was created by splitting the core lengthwise and precisely controlling the fracture aperture by applying a specific confining pressure. The foam-flooding experiments reveal that, in an oil-wet fractured Edward Brown dolomite, our low-IFT foaming formulation recovers approximately 72% original oil in place (OOIP), whereas waterflooding recovers only less than 2% OOIP; moreover, the residual oil saturation in the matrix was lowered by more than 20% compared with a foaming formulation lacking a low-IFT property. Coreflood results also indicate that the low-IFT foam diverts primarily the aqueous surfactant solution into the matrix because of (1) mobility reduction caused by foam in the fracture, (2) significantly lower capillary entry pressure for surfactant solution compared with gas, and (3) increasing the water relative permeability in the matrix by decreasing the residual oil. The selective diversion effect of this low-IFT foaming system effectively recovers the trapped oil, which cannot be recovered with single surfactant or high-IFT foaming formulations applied to highly heterogeneous or fractured reservoirs.


1983 ◽  
Vol 23 (03) ◽  
pp. 417-426 ◽  
Author(s):  
Philip J. Closmann ◽  
Richard D. Seba

Abstract This paper presents results of laboratory experiments conducted to determine the effect of various parameters on residual oil saturation from steamdrives of heavy-oil reservoirs. These experiments indicated that remaining oil saturation, both at steam breakthrough and after passage of several PV of steam, is a function of oil/water viscosity ratio at saturated steam conditions. Introduction Considerable attention has been given to thermal techniques for stimulating production of underground hydrocarbons, particularly the more viscous oils production of underground hydrocarbons, particularly the more viscous oils and tars. Steam injection has been studied as one means of heating oil in place, reducing its viscosity, and thus making its displacement easier. place, reducing its viscosity, and thus making its displacement easier. A number of investigators have measured residual oil saturations remaining in the steam zone. Willman et al. also analyzed the steam displacement process to account for the oil recoveries observed. A number of methods have been developed to calculate the size of the steam zone and to predict oil recoveries by application of Buckley-Leverett theory, including the use of numerical simulation. The work described here was devoted to an experimental determination of oil recovery by steam injection in linear systems. The experiments were unscaled as far as fluid flow rates, gravity forces, and heat losses were concerned. Part of the study was to determine recoveries of naturally occurring very viscous tars in a suite of cores containing their original oil saturation. The cores numbered 95, 140, and 143 are a part of this group. Heterogeneities in these cores, however, led to the extension of the work to more uniform systems, such as sandpacks and Dalton sandstone cores. Our interest was in obtaining an overall view of important variables that affected recovery. In particular, because of the significant effect of steam distillation, most of the oils used in this study were chosen to avoid this factor. We also studied the effect of pore size on the residual oil saturation. As part of this work, we investigated the effect of the amount of water flushed through the system ahead of the steam front in several ways:the production rate was varied by a factor of four,the initial oil saturation was varied by a factor of two, andthe rate of heat loss was varied by removing the heat insulation from the flow system. Description of Apparatus and Experimental Technique Two types of systems were studied: unconsolidated sand and consolidated sandstone. The former type was provided by packing a section of pipe with 50–70 mesh Ottawa sand. Most runs on this type of system were in an 18-in. (45.72-cm) section of 1 1/2 -in. (3.8 1 -cm) diameter pipe, although runs on 6-in. (15.24-cm) and 5-ft (152.4-cm) lengths were also included. Consolidated cores 9 to 13 in. (22.86 to 33.02 cm) long and approximately 2 1/4 in. (5.72 cm) in diameter were sealed in a piece of metal pipe by means of an Epon/sand mixture. A photograph of two 9-in. (22.86-cm) consolidated natural cores (marked 95 and 143) from southwest Missouri, containing original oil, is shown as Fig. 1. In all steamdrive runs, the core was thermally insulated to reduce heat loss, unless the effect of heat loss was specifically being studied. Flow was usually horizontal except for the runs in which the effects of flushing water volume and of unconsolidated-sand pore size were examined. Micalex end pieces were used on the inlet end in initial experiments with consolidated cores to reduce heat leakage from the steam line to the metal jacket on the outside of the core. During most runs, however, the entire input assembly eventually became hot. SPEJ p. 417


2015 ◽  
Vol 12 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Lei-Ting Shi ◽  
Shi-Jie Zhu ◽  
Jian Zhang ◽  
Song-Xia Wang ◽  
Xin-Sheng Xue ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Ying Yang ◽  
Xiao-Feng Zhou ◽  
Le-Yin Sun ◽  
An-Lun Wang ◽  
Jian-guang Wei ◽  
...  

Residual oil distribution plays a critical role in understanding of the CO2 flooding processes, but its quantitative research for reservoirs with different permeability levels rarely has been comprehensively conducted in the laboratory. This article presents the results of an experimental study on the immiscible CO2 displacement efficiency in different permeability core samples and various oil distribution patterns prior to and after immiscible CO2 flooding. Experiments were conducted on four core samples extracted from the selected oil field with a permeability range from 0.210–66.077 mD. The experimental results show that the immiscible CO2 can mobilize oil in ultralow-permeability environment and achieve a reasonable displacement efficiency (40.98%). The contribution of different oil distribution patterns to displacement efficiency varies in reservoirs with different permeabilities. With the increase of core permeability, the contribution of cluster and intergranular pore oil distribution patterns to displacement efficiency increases. However, the oil displacement efficiency of corner and oil film patterns tends to increase with lower permeability. Therefore, immiscible CO2 flooding is recommended for ultralow-permeability case, especially for reservoirs with larger amount of oil in corner and oil film distribution patterns. The oil displacement efficiency calculated by immiscible CO2 flooding experiment results agrees reasonably well with the core frozen slices observation. The results of this study have practical significance that refers to the effective development of low-permeability reservoirs.


2014 ◽  
Vol 962-965 ◽  
pp. 469-472
Author(s):  
Xing Hong Chen

Block 127 reservoir was a typical heavy oil reservoir with normal pressure system, high density and viscosity. The block was low production because formation water invaded seriously. Well condition and effects of measure were badly year after year. In order to clarify remaining oil distribution rule, east and west typical well group of block in 127 was chosen. Careful research in typical well group and multiple well group synthesis research method was used to research with numerical simulation method. The sub-zone sand body residual oil saturation chorizo-gram of well groups and entire block were mapped, qualitative and quantity analysis residual oil distribution rule was studied on plane and vertical. The larger and more complex structure reservoir, used to Domain decomposition method with the typical well group fine research, multi-well-group integrated research method is feasible. The knowledge of residual oil is made deeply and these works offer technique support for block heavy oil reservoir.


2014 ◽  
Vol 522-524 ◽  
pp. 1537-1541 ◽  
Author(s):  
Jiu Hong Feng ◽  
Yang Liu

With the amount of polymer used in oil field increases year by year and the development results turn worse, people started to pay more attention to the technologies which can improve the polymer flooding recovery of class II reservoirs. Polymer flooding efficiency can be enhanced through methods such as detail geologic analysis, project design optimization and strengthen procedure management with applying mature supporting technologies. In this paper, the necessity of improving the polymer flooding effect of class II reservoir is introduced. The technologies to develop polymer flooding efficiency are proposed. The applying results of these technologies show that meticulous reservoir simulation and deepen recognize of structure and reserve and residual oil distribution are the base of improving polymer flooding efficiency. Optimizing polymer injection design to match the oil reserve is the key part of improving polymer flooding efficiency. Deepening technology research and building workflow of different measures and adjustment technologies at different production stages are efficient ways to improve polymer flooding efficiency. Insisting on the comprehensive adjust pattern of normal molecular weight with normal molecular concentration, individual design, scale injection, profile control in time, adjust with time and strengthen procedure management are the predominant guarantee of improving polymer flooding efficiency.


2015 ◽  
Vol 29 (8) ◽  
pp. 4721-4729 ◽  
Author(s):  
Hui Gao ◽  
Yueliang Liu ◽  
Zhang Zhang ◽  
Baolun Niu ◽  
Huazhou Li

1980 ◽  
Vol 20 (06) ◽  
pp. 459-472 ◽  
Author(s):  
G.P. Willhite ◽  
D.W. Green ◽  
D.M. Okoye ◽  
M.D. Looney

Abstract Microemulsions located in a narrow single-phase region on the phase diagram for the quaternary system consisting of nonane, isopropyl alcohol, Witco TRS 10-80 petroleum sulfonate, and brine were used to investigate the effect of phase behavior on displacement efficiency of the micellar flooding process. Microemulsion floods were conducted at reservoir rates in 4-ft (1.22-m) Berea cores containing brine and residual nonane. Two floods were made using large (1.0-PV) slugs. A third flood used a 0.1-PV slug followed by a mobility buffer of polyacrylamide. Extensive analyses of the core effluents were made for water, nonane, alcohol, and mono- and polysulfonates. An oil bank developed which broke through at 0.08 to 0.1 PV, and 48 to 700/0 of the oil was recovered in this bank which preceeded breakthrough of monosulfonate and alcohol. Coincidental with the arrival of these components of the slug, the effluent became a milky white macroemulsion which partially separated upon standing. Additional oil was recovered with the macroemulsion. Ultimate recoveries were 90 to 100% of the residual oil. Low apparent interfacial tension was observed between the emulsion and nonane. Alcohol arrived in the effluent at the same time as monosulfonate even though there was extensive adsorption of the sulfonate. Further, alcohol appeared in the effluent well after sulfonate production had ceased, indicating retention of the alcohol in the core. A qualitative model describing the displacement process was inferred from the appearance of the produced fluids and the analyses of the effluents. Introduction Surfactant flooding (micellar or microemulsion) is one of the enhanced oil recovery methods being developed to recover residual oil left after waterflooding. Two approaches to surfactant flooding have evolved in practice. In one, relatively large volumes (0.25 PV) of low-concentration surfactant solution are used to create low-tension waterfloods.1,2 Oil is mobilized by reduction of interfacial tension to levels on the order of about 10−3 dyne/ cm (10−3 mN/m). The second approach involves the application of small volumes (0.03 to 0.1 PV) of high-concentration solutions.3,4 These solutions are miscible to some extent with the formation water and/or crude oil. Consequently, miscibility between the surfactant solution and oil and/or low interfacial tensions contribute to the oil displacement efficiency. The relative importance of these mechanisms has been the subject of several papers5,6 and discussions.7,8


Sign in / Sign up

Export Citation Format

Share Document