scholarly journals Experimental analysis on the synergistic effect of combined use of ozone and UV radiation for the treatment of dairy industry wastewater

2020 ◽  
Vol 26 (5) ◽  
pp. 200375-0
Author(s):  
Ramya Suresh ◽  
Baskar Rajoo ◽  
Maheswari Chenniappan ◽  
Manikandan Palanichamy

The present study focused on the various advanced oxidation processes; Ozone, UV radiation, O<sub>3</sub>/H<sub>2</sub>O<sub>2</sub>, O<sub>3</sub>/UV, UV/H<sub>2</sub>O<sub>2</sub> and O<sub>3</sub>/UV/H<sub>2</sub>O<sub>2</sub> for treatability of dairy industry wastewater. With this aim, the trials were carried out in cylindrical reactor fortified with UV radiation and Ozone injection. Efficiency of the treatment process was evaluated considering Chemical Oxygen Demand (COD), lactose reduction and process parameters were determined to be reaction time, pH, circulation rate, and H<sub>2</sub>O<sub>2</sub> dosage. 32.5%, 35.2% , 25%, 83% COD and 40.6%, 43.6%, 38.2%, 80% lactose reduction efficiency were obtained under the operating conditions for O<sub>3</sub>/H<sub>2</sub>O<sub>2</sub>, O<sub>3</sub>/UV, UV/H<sub>2</sub>O<sub>2</sub> and O<sub>3</sub>/UV/H<sub>2</sub>O<sub>2</sub> processes, respectively. As per this outcome, UV/H<sub>2</sub>O<sub>2</sub>/O<sub>3</sub> process gave more than 65% of COD and 52.36% of lactose reduction efficiency than other hybrid processes. Optimum conditions for UV/H<sub>2</sub>O<sub>2</sub>/O<sub>3</sub> process (pH = 5, time = 180 mins, circulation rate = 50 mL/h and H<sub>2</sub>O<sub>2</sub> dosage of 0.5 mL) resulted in 88% of COD and 93.4% lactose reduction.

2021 ◽  
Vol 83 (5) ◽  
pp. 1250-1264
Author(s):  
B. L. Dinesha ◽  
Sharanagouda Hiregoudar ◽  
Udaykumar Nidoni ◽  
K. T. Ramappa ◽  
Anilkumar Dandekar ◽  
...  

Abstract The present investigation was focused to compare chitosan based nano-adsorbents (CZnO and CTiO2) for efficient treatment of dairy industry wastewater using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) models. The nano-adsorbents were synthesized using chemical precipitation method and characterized by using scanning electron microscope with elemental detection sensor (SEM-EDS) and atomic force microscope (AFM). Maximum %RBOD (96.71 and 87.56%) and %RCOD (90.48 and 82.10%) for CZnO and CTiO2 nano-adsorbents were obtained at adsorbent dosage of 1.25 mg/L, initial biological oxygen demand (BOD) and chemical oxygen demand (COD) concentration of 100 and 200 mg/L, pH of 7.0 and 2.00, contact time of 100 and 60 min, respectively. The results obtained for both the nano-adsorbents were subject to RSM and ANN models for determination of goodness of fit in terms of sum of square errors (SSE), root mean square error (RMSE), R2 and Adj. R2, respectively. The well trained ANN model was found superior over RSM in prediction of the treatment effect. Hence, the developed CZnO and CTiO2 nano-adsorbents could be effectively used for dairy industry wastewater treatment.


2019 ◽  
Vol 8 (2) ◽  
pp. 2595-2599

Biodegradation using sequencing batch reactor is one of the best method of treating the wastewater from the diary industries. Milk and milk based products has become most essential and important role in day-to-day life of human. The raw milk undergoes various processing in dairy industries to produce other milk based products. The large quantities of water and other chemicals are required in a diary plant. The volume of water used in a diary industry varies with respect to the availability of water, processing method and type of flow. The waste water after every step of processing is discharged into either the natural water bodies or to the environment which alters the ecological balance. This research work on the laboratory scale model is used for the analysis and treatment of dairy industry wastewater. The parameters studied are the biological oxygen demand, chemical oxygen demand, dissolved oxygen, total dissolved solids, suspended solids, pH and other substances present in the diary waste water. In this study, biodegradation of dairy wastewater was investigated under a sequencing batch reactor under aerobic conditions. It is performed on three different phases with variable reaction time to study the reductions in BOD, COD and other parameters respectively.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1139 ◽  
Author(s):  
Juan Morales-Rivera ◽  
Belkis Sulbarán-Rangel ◽  
Kelly Joel Gurubel-Tun ◽  
Jorge del Real-Olvera ◽  
Virgilio Zúñiga-Grajeda

In this paper, electrocoagulation (EC) treatment for the removal of chemical oxygen demand (COD) from cold meat industry wastewater is modeled and optimized using computational techniques. Methods such as artificial neural networks (ANNs) and response surface methodology (RSM), based on the Box–Behnken design using three levels, were employed to calculate the best control parameters for pH (5–9), current density (2–6 mA/cm2) and EC time (20–60 min). Analysis of variance (ANOVA) and 3D graphs revealed that pH and current density are the main parameters used for depicting the EC process. The developed models successfully describe the process with a correlation coefficient of R2 = 0.96 for RSM and R2 = 0.99 for ANN. The models obtained were optimized applying the moth-flame optimization (MFO) algorithm to find the best operating conditions for COD removal. ANN-MFO was used and showed superior COD removal (92.91%) under conditions of pH = 8.9, current density = 6.6 mA/cm2 and an EC time of 38.62 min. The energy consumption with these optimal conditions was 6.92 kWh/m3, with an operational cost of $3.14 (USD)/m3. These results suggest that the proposed computational model can be used to obtain more effective and economical treatments for this type of effluent.


Author(s):  
Vibha Agrawal ◽  
Dr. D.D. Sarode

The dairy industry continues to grow with the growing population. It is considered the most polluting industry in terms of water consumption and wastewater generation. It generates about 6 to 10 litres of organically loaded effluent per litre of milk processed depending upon the products manufactured. Indian Standard (IS) 8682:1977 gives the guidelines for the treatment and disposal of dairy wastewater to protect the environment. The dairy effluent generally has dilutions of milk products generated from washing of floor, storage means such as cans, tanks, milk spillage, liquid effluent of cheese, paneer and yoghurt production called whey. It has high Chemical Oxygen Demand (COD) due to presence of organic contents because of fats, proteins and carbohydrates. To reduce the effect of the dairy wastewater on the environment, it is necessary to adapt some advanced techniques. Generally, all the food industries including the dairy industry look upto the membrane processes to recycle and reuse the wastewater. Membrane filtration is not only used for reclamation and reuse but also for fractionation of whey, recovery from cleaning solutions and various other processes. Thus, this paper is a mini review which gives various details about the dairy industry wastewater.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1355-1363 ◽  
Author(s):  
C-W. Kim ◽  
H. Spanjers ◽  
A. Klapwijk

An on-line respiration meter is presented to monitor three types of respiration rates of activated sludge and to calculate effluent and influent short term biochemical oxygen demand (BODst) in the continuous activated sludge process. This work is to verify if the calculated BODst is reliable and the assumptions made in the course of developing the proposed procedure were acceptable. A mathematical model and a dynamic simulation program are written for an activated sludge model plant along with the respiration meter based on mass balances of BODst and DO. The simulation results show that the three types of respiration rate reach steady state within 15 minutes under reasonable operating conditions. As long as the respiration rate reaches steady state the proposed procedure calculates the respiration rate that is equal to the simulated. Under constant and dynamic BODst loading, the proposed procedure is capable of calculating the effluent and influent BODst with reasonable accuracy.


2019 ◽  
Vol 80 (12) ◽  
pp. 2310-2319 ◽  
Author(s):  
Prashant Dhanke ◽  
Sameer Wagh ◽  
Abhijeet Patil

Abstract Water generated from the fish processing industry is contaminated with organic matter. This organic matter present in wastewater increases the biochemical oxygen demand (BOD) and chemical oxygen demand (COD). A new technology, hydrodynamic cavitation (HC) is used to deal with this wastewater produced in fish processing plants. The orifice plate is used in the HC reactor to generate a cavitation effect. The intensification of this technique was carried out with the help of hydrogen peroxide (H2O2) and TiO2. The treatment of this wastewater is reported in terms of percent degradation in BOD and COD and in biodegradability index (BI). Operating parameters like inlet pressure, pH, operating temperature and H2O2 doses were used to find the optimum condition. 15 g/L of H2O2 gave 69.5% reduction of COD in the 120 min of treatment that also increases BI value to 0.93 at inlet pressure 8 bar, Plate-5, temperature (30 °C), and pH 4. In the ultrasonic cavitation (UC) reactor, COD reduction is 68.7% without TiO2 and with TiO2 it is 71.2%. Also, this HC and UC reactor reduced CFU count to a great extent at the same operating conditions.


2021 ◽  
Vol 14 ◽  
pp. 117862212110281
Author(s):  
Ahmed S. Mahmoud ◽  
Nouran Y. Mohamed ◽  
Mohamed K. Mostafa ◽  
Mohamed S. Mahmoud

Tannery industrial effluent is one of the most difficult wastewater types since it contains a huge concentration of organic, oil, and chrome (Cr). This study successfully prepared and applied bimetallic Fe/Cu nanoparticles (Fe/Cu NPs) for chrome removal. In the beginning, the Fe/Cu NPs was equilibrated by pure aqueous chrome solution at different operating conditions (lab scale), then the nanomaterial was applied in semi full scale. The operating conditions indicated that Fe/Cu NPs was able to adsorb 68% and 33% of Cr for initial concentrations of 1 and 9 mg/L, respectively. The removal occurred at pH 3 using 0.6 g/L Fe/Cu dose, stirring rate 200 r/min, contact time 20 min, and constant temperature 20 ± 2ºC. Adsorption isotherm proved that the Khan model is the most appropriate model for Cr removal using Fe/Cu NPs with the minimum error sum of 0.199. According to khan, the maximum uptakes was 20.5 mg/g Cr. Kinetic results proved that Pseudo Second Order mechanism with the least possible error of 0.098 indicated that the adsorption mechanism is chemisorption. Response surface methodology (RSM) equation was developed with a significant p-value = 0 to label the relations between Cr removal and different experimental parameters. Artificial neural networks (ANNs) were performed with a structure of 5-4-1 and the achieved results indicated that the effect of the dose is the most dominated variable for Cr removal. Application of Fe/Cu NPs in real tannery wastewater showed its ability to degrade and disinfect organic and biological contaminants in addition to chrome adsorption. The reduction in chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), Cr, hydrogen sulfide (H2S), and oil reached 61.5%, 49.5%, 44.8%, 100%, 38.9%, 96.3%, 88.7%, and 29.4%, respectively.


2020 ◽  
Vol 1655 ◽  
pp. 012123
Author(s):  
Titin Handayani ◽  
Adi Mulyanto ◽  
Fajar Eko Priyanto ◽  
Rudi Nugroho

Author(s):  
Eman Hashim Khader ◽  
Thamer Jassim Mohammed ◽  
Nourollah Mirghaffari ◽  
Ali Dawood Salman ◽  
Tatjána Juzsakova ◽  
...  

AbstractThis paper studied the adsorption of chemical oxygen demand (COD), oil and turbidity of the produced water (PW) which accompanies the production and reconnaissance of oil after treating utilizing powdered activated carbon (PAC), clinoptilolite natural zeolite (CNZ) and synthetic zeolite type X (XSZ). Moreover, the paper deals with the comparison of pollutant removal over different adsorbents. Adsorption was executed in a batch adsorption system. The effects of adsorbent dosage, time, pH, oil concentration and temperature were studied in order to find the best operating conditions. The adsorption isotherm models of Langmuir, Freundlich and Temkin were investigated. Using pseudo-first-order and pseudo-second-order kinetic models, the kinetics of oil sorption and the shift in COD content on PAC and CNZ were investigated. At a PAC adsorbent dose of 0.25 g/100 mL, maximum oil removal efficiencies (99.57, 95.87 and 99.84 percent), COD and total petroleum hydrocarbon (TPH) were identified. Moreover, when zeolite X was used at a concentration of 0.25 g/100 mL, the highest turbidity removal efficiency (99.97%) was achieved. It is not dissimilar to what you would get with PAC (99.65 percent). In comparison with zeolites, the findings showed that adsorption over PAC is the most powerful method for removing organic contaminants from PW. In addition, recycling of the consumed adsorbents was carried out in this study to see whether the adsorbents could be reused. Chemical and thermal treatment will effectively regenerate and reuse powdered activated carbon and zeolites that have been eaten. Graphic abstract


2014 ◽  
Vol 89 (11) ◽  
pp. 1627-1636 ◽  
Author(s):  
Dogan Karadag ◽  
Oguz Emre Köroğlu ◽  
Bestami Ozkaya ◽  
Mehmet Cakmakci ◽  
Sonia Heaven ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document