scholarly journals Biosorption of Co2+ Ions from Aqueous Solution by K2HPO4-Pretreated Duckweed Lemna gibba

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1532
Author(s):  
Jessica Lizeth Reyes-Ledezma ◽  
Eliseo Cristiani-Urbina ◽  
Liliana Morales-Barrera

The wastewater of the many industries that use divalent cobalt (Co2+)-containing compounds has elevated levels of this metal. Thus, novel technology is needed to efficiently remove Co2+ ions from aqueous solutions. Biosorption is a low-cost technique capable of removing heavy metals from contaminated water. This study aims to evaluate the performance of KH2PO4-pretreated Lemna gibba (PLEM) as a biosorbent of Co2+ in aqueous solutions tested under different conditions of pH, particle size, and initial Co2+ concentration. Kinetic, equilibrium, and thermodynamic studies were conducted. The capacity of biosorption increased with a greater initial Co2+ concentration and was optimal at pH 7.0 and with small-sized biosorbent particles (0.3–0.8 mm). The pseudo-second-order sorption model best describes the experimental data on Co2+ biosorption kinetics. The Sips and Redlich-Peterson isotherm models best predict the biosorption capacity at equilibrium. According to the thermodynamic study, biosorption of Co2+ was endothermic and spontaneous. The effect of pH on the biosorption/desorption of Co2+ suggests that electrostatic attraction is the main biosorption mechanism. SEM-EDX verified the presence of Co2+ on the surface of the pretreated-saturated biosorbent and the absence of the metal after desorption.

2012 ◽  
Vol 66 (3) ◽  
pp. 564-572 ◽  
Author(s):  
Görkem Değirmen ◽  
Murat Kılıç ◽  
Özge Çepelioğullar ◽  
Ayşe E. Pütün

In this study, the removal of copper(II) and cadmium(II) ions from aqueous solutions by biosorption onto pine cone was studied. Variables that affect the biosorption process such as pH, biosorbent dosage, initial metal ion concentration, contact time and temperature of solution were optimized. Experimental data were fitted to Langmuir, Freundlich, Dubinin Radushkevich and Temkin isotherm models to investigate the equilibrium isotherms. Pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were used to determine the biosorption mechanism. The thermodynamics of biosorption were studied for predicting the nature of biosorption. Experimental results showed that pine cone could be evaluated as an alternative precursor for removal of heavy metal ions from aqueous solutions, due to its high biosorption capacity, availability, and low cost.


Author(s):  
Teba H. Mhawesh ◽  
Ziad T. Abd Ali

The potential application of granules of Granular brick waste as a low-cost sorbent for removal of Pb+2 ions from aqueous solutions has been studied. The properties of Granular brick waste were determined through several tests such as X-Ray diffraction , Energy dispersive X-ray, Scanning electron microscopy , and surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of lead (89.5 %) were 2.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The sorption data obtained by batch experiments subjected to the three isotherm models called Langmuir, Freundlich and   Elovich. The results showed that the Langmuir isotherm model described well the sorption data (R2= 0.9866) in comparison with other models. The kinetic data were analyzed using two kinetic models called pseudo_first_order and pseudo_second_order. The pseudo-second-order kinetic model was found to agree well with the experimental data.


2017 ◽  
Vol 43 (3) ◽  
pp. 10-16 ◽  
Author(s):  
Krzysztof Kuśmierek ◽  
Paulina Idźkiewicz ◽  
Andrzej Świątkowski ◽  
Lidia Dąbek

AbstractThe usefulness of untreated powdered eggshell as low-cost adsorbent for the removal of pentachlorophenol (PCP) from aqueous solutions was investigated. The most important parameters affecting the adsorption process, including the pH and ionic strength, were examined. The adsorption characteristics of PCP onto eggshell were evaluated in terms of kinetic and equilibrium parameters. The kinetic data were studied in terms of the pseudo-first order, pseudo-second order and intra-particle diffusion kinetic models. The equilibrium data were analyzed using the Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. The pseudo-second order model best described the adsorption kinetics. Using the Langmuir equation, the monolayer adsorption capacity of eggshell for PCP was found to be 0.127 mg/g. The results showed that PCP can be effectively removed from aqueous solution employing eggshell as a cheap adsorbent.


2012 ◽  
Vol 66 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Çisem Kırbıyık ◽  
Murat Kılıç ◽  
Özge Çepelioğullar ◽  
Ayşe E. Pütün

In this study an agricultural residue, sesame stalk, was evaluated for the removal of Ni(II) and Zn(II) metal ions from aqueous solutions. Biosorption studies were carried out at different pH, biosorbent dosage, initial metal ion concentrations, contact time, and solution temperature to determine the optimum conditions. The experimental data were modeled by Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Langmuir model resulted in the best fit of the biosorption data. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data and to evaluate rate constants. The best correlation was provided by the second-order kinetic model. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The experimental results showed that sesame stalk can be used as an effective and low-cost biosorbent precursor for the removal of heavy metal ions from aqueous solutions.


Author(s):  
Yusef Omidi Khaniabadi ◽  
Hassan Basiri ◽  
Heshmatollah Nourmoradi ◽  
Mohammad Javad Mohammadi ◽  
Ahmad Reza Yari ◽  
...  

AbstractIn this study, the sorption of Congo red (CR), as a toxic dye, from aqueous media was investigated using montmorillonite (MMT) as a low-cost adsorbent. The influence of several factors such as contact time, pH, adsorbent dosage, dye content, and ionic strength was investigated on the dye removal. MMT was characterized by Fourier transformed infrared (FTIR) spectroscopy and X-ray diffractometer (XRD). Different kinetic and isotherm models including pseudo-first and pseudo-second order kinetic and Langmuir and Freundlich were applied to analyze experimental data, respectively. The results showed that the data were well fitted by pseudo-second-order kinetic and Freundlich isotherm models. The optimum conditions for the sorption of CR were achieved over 40 min and at pH=2. According to the results of the present study, MMT can be used as a low-cost, eco-friendly and effective option for the adsorption of CR from aqueous solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Bayram Kizilkaya ◽  
A. Adem Tekınay

Removal of lead (II) from aqueous solutions was studied by using pretreated fish bones as natural, cost-effective, waste sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacities of the adsorbent was investigated. The maximum adsorption capacity for Pb (II) was found to be 323 mg/g at optimum conditions. The experiments showed that when pH increased, an increase in the adsorbed amount of metal of the fish bones was observed. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of Pb (II) adsorption and the value ofRLfor Pb (II) was found to be 0.906. The thermodynamic parameters related to the adsorption process such asEa,ΔG°,ΔH°, andΔS° were calculated andEa,ΔH°, andΔS° were found to be 7.06, 46.01 kJ mol−1, and 0.141 kJ mol−1K−1for Pb (III), respectively.ΔH° values (46.01 kJmol−1) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to the experimental equilibrium data. The fish bones were effectively used as sorbent for the removal of Pb (II) ions from aqueous solutions.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Joshua N. Edokpayi ◽  
Samson O. Alayande ◽  
Ahmed Adetoro ◽  
John O. Odiyo

In this study, the potential for pulverized raw macadamia nut shell (MNS) for the sequestration of methylene blue from aqueous media was assessed. The sorbent was characterized using scanning electron microscopy for surface morphology, functional group analysis was performed with a Fourier-transform infrared spectrometer (FT-IR), and Brunauer–Emmett–Teller (BET) isotherm was used for surface area elucidation. The effects of contact time, sorbent dosage, particle size, pH, and change in a solution matrix were studied. Equilibrium data were fitted using Temkin, Langmuir, and Freundlich adsorption isotherm models. The sorption kinetics was studied using the Lagergren pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The feasibility of the study was established from the thermodynamic studies. A surface area of 2.763 m2/g was obtained. The equilibrium and kinetics of sorption was best described by the Langmuir and the pseudo-second-order models, respectively. The sorption process was spontaneous (−ΔG0=28.72−31.77 kJ/mol) and endothermic in nature (ΔH0=17.45 kJ/mol). The positive value of ΔS0 (0.15 kJ/molK) implies increased randomness of the sorbate molecules at the surface of the sorbent. This study presents sustainable management of wastewater using MNS as a potential low-cost sorbent for dye decontamination from aqueous solution.


2012 ◽  
Vol 9 (3) ◽  
pp. 1389-1399 ◽  
Author(s):  
R. Hema Krishna ◽  
A. V. V. S. Swamy

The powder of mosambi fruit peelings (PMFP) was used as an adsorbent for the removal of heavy metal like Cr (VI) from aqueous solutions was studied using batch tests. The influence of physico-chemical key parameters such as the initial metal ion concentration, pH, agitation time, adsorbent dosage, and the particle size of adsorbent has been considered in batch tests. Sorbent ability to adsorb Cr (VI) ions was examined and the mechanism involved in the process investigated. The optimum results were determined at an initial metal ion concentration was 10 mg/lit, pH=2, agitation time – 60 min, an adsorbent dose (150 mg/50 ml) and the particle size (0.6 mm). The % adsorption, Langmuir constants [Q0=7.51(mg/g) and b=1.69(mg/lit)] Freundlich constant(Kf=2.94), Lagergren rate constants (Kad(min-1)=5.75 x 10-2) for [Cr(VI)] 10 mg/lit were determined for the adsorption system as a function of sorbate concentration. The equilibrium data obtained were tested using Langmuir, Freundlich adsorption isotherm models, and the kinetic data obtained were fitted to pseudo first order model.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
F. Granados-Correa ◽  
J. Vilchis-Granados ◽  
M. Jiménez-Reyes ◽  
L. A. Quiroz-Granados

The hydroxyapatite was successfully synthesized, characterized, and used as an alternative low-cost adsorbent material to study the adsorption behavior of La(III) and Eu(III) ions from nitrate aqueous solutions as a function of contact time, initial metal ion concentration, pH, and temperature by using a bath technique. The kinetic data correspond very well to the pseudo-second-order equation, and in both cases the uptake was affected by intraparticle diffusion. Isotherm adsorption data were well fitted by the Freundlich model equation with1/n>1, indicating a multilayer and cooperative-type adsorption. Thermodynamic parameters for the adsorption systems were determinated at 293, 303, 313, and 323 K. These parameters show that adsorptions of La(III) and Eu(III) ions on hydroxyapatite are endothermic and spontaneous processes. The adsorption was found to follow the order Eu(III) > La(III) and is dependent on ion concentration, pH, and temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
P. Sujatha ◽  
V. Kalarani ◽  
B. Naresh Kumar

The primary objective of the present study is to evaluate the optimization conditions such as kinetic and equilibrium isotherm models involved in the removal of Ni(II) from the aqueous solutions byTrichoderma viride. The biosorbent was characterized by FTIR and SEM. The optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, initial metal ion concentration, and temperature. The maximum Ni(II) biosorption was obtained at pH 4.5. The equilibrium data were better fit by the Langmuir isotherm model than by the Freundlich isotherm. The kinetic studies indicate that the biosorption process of the metal ion Ni(II) has followed well the pseudo-second-order model. The sum of the square errors (SSE) and chi-square (χ2) tests were also carried out to find the best fit kinetic model and adsorption isotherm. The maximum biosorption capacity (qm) ofT.viridebiomass was found to be 47.6 mg/g for Ni(II) ion. Therefore, it can be concluded thatT.viridebiomass was effective and low-cost potential adsorbent to remove the toxic metal Ni(II) from aqueous solutions. The recovery process of Ni(II) fromT.viridebiomass was found to be higher than 98% by using 0.25 M HNO3. Besides the application of removal of toxic metal Ni(II) from aqueous solutions, the biosorbentT.viridecan be reused for five consecutive sorption-desorption cycles was determined.


Sign in / Sign up

Export Citation Format

Share Document