scholarly journals Utilization to Remove Pb (II) Ions from Aqueous Environments Using Waste Fish Bones by Ion Exchange

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Bayram Kizilkaya ◽  
A. Adem Tekınay

Removal of lead (II) from aqueous solutions was studied by using pretreated fish bones as natural, cost-effective, waste sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacities of the adsorbent was investigated. The maximum adsorption capacity for Pb (II) was found to be 323 mg/g at optimum conditions. The experiments showed that when pH increased, an increase in the adsorbed amount of metal of the fish bones was observed. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of Pb (II) adsorption and the value ofRLfor Pb (II) was found to be 0.906. The thermodynamic parameters related to the adsorption process such asEa,ΔG°,ΔH°, andΔS° were calculated andEa,ΔH°, andΔS° were found to be 7.06, 46.01 kJ mol−1, and 0.141 kJ mol−1K−1for Pb (III), respectively.ΔH° values (46.01 kJmol−1) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to the experimental equilibrium data. The fish bones were effectively used as sorbent for the removal of Pb (II) ions from aqueous solutions.

2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Pezhman Zein Al-Salehin ◽  
Farid Moeinpour ◽  
Fatemeh S. Mohseni-Shahri

Abstract In the present paper, used cigarette filter ash was prepared and used as an active adsorbent to remove As(III) ions from aqueous solutions. The prepared adsorbent structure was identified by scanning electron microscopy analysis, Brunauer–Emmett–Teller method and energy-dispersive X-ray spectroscopy analysis. The influence of contact time, pH, adsorbent dose and initial concentration of As(III) on the removal of As(III) was assessed. Several isotherm models were checked to illustrate the adsorption equilibrium. The adsorption equilibrium data adapted well with the Langmuir isotherm model. The maximum adsorption capacity of 33.33 mg/g was acquired from the Langmuir isotherm. The calculated thermodynamic variables verified that the adsorption process is spontaneous and endothermic.


2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


2014 ◽  
Vol 70 (1) ◽  
pp. 102-107 ◽  
Author(s):  
Caroline Trevisan Weber ◽  
Gabriela Carvalho Collazzo ◽  
Marcio Antonio Mazutti ◽  
Edson Luiz Foletto ◽  
Guilherme Luiz Dotto

Papaya (Carica papaya L.) seeds were used as adsorbent to remove toxic pharmaceutical dyes (tartrazine and amaranth) from aqueous solutions, in order to extend application range. The effects of pH, initial dye concentration, contact time and temperature were investigated. The kinetic data were evaluated by the pseudo first-order, pseudo second-order and Elovich models. The equilibrium was evaluated by the Langmuir, Freundlich and Temkin isotherm models. It was found that adsorption favored a pH of 2.5, temperature of 298 K and equilibrium was attained at 180–200 min. The adsorption kinetics followed the pseudo second-order model, and the equilibrium was well represented by the Langmuir model. The maximum adsorption capacities were 51.0 and 37.4 mg g−1 for tartrazine and amaranth, respectively. These results revealed that papaya seeds can be used as an alternative adsorbent to remove pharmaceutical dyes from aqueous solutions.


Background: Anthracene is an organic compound and environmentally resistant pollutant that causes severe damage to human health due to toxic and carcinogenic properties. The present study aimed to investigate the efficiency of magnetic dendrimer nano-adsorbent for the removal of anthracene from aqueous solutions. Methods: In this study, the synthesized iron oxide nanoparticles were modified by dendrimer polymer chains and 4-aminophenol ligand. The Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy were conducted to examine the nano-absorbent properties. Different operational parameters in the adsorption process in batch and laboratory conditions were also studied, and the adsorbent reusability was correspondingly examined in this study. The residual concentration of anthracene in aqueous solution was determined and reported by a spectrophotometer. Findings: Optimization results showed that the maximum adsorbent capacity under optimum conditions (pH=7, 20 mg/L anthracene concentration, 0.5 g/L adsorbent dosage, and 30 min contact time) was equal to 83 mg/g. The experimental data fitted with different isotherm models showed that the equilibrium data were well described by the Langmuir model. In this study, the adsorption process overlapped more with the pseudo-second-order kinetics model. Conclusion: The obtained results indicated that the synthesized nanostructured adsorbent has a high adsorption capacity with high recovery and is efficient enough to remove anthracene from aqueous solutions.


2012 ◽  
Vol 27 ◽  
pp. 107-114
Author(s):  
Jagjit Kour ◽  
P. L. Homagai ◽  
M. R. Pokherel ◽  
K. N. Ghimire

The industrial discharge of heavy metals into waters' course is one of the major pollution problems affecting water quality. Therefore, they must be removed prior to their discharge into waste streams. An efficient and low-cost bioadsorbent has been investigated from Desmostachya bipinnata (Kush) by charring with concentrated sulphuric acid and functionalized with dimethylamine.It was characterised by SEM, FTIR and elemental analysis. The effect of pH, initial concentration and contact time of the metal solution was monitered by batch method. The maximum adsorption capacities were determined for Cd and Zn at their optimum pH 6. The equilibrium data were analysed using Langmuir and Freundlich isotherm models. Langmuir isotherm model fitted well and the rate of adsorption followed the pseudo second order kinetic equation.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6669 J. Nepal Chem. Soc., Vol. 27, 2011 107-114  


2009 ◽  
Vol 60 (2) ◽  
pp. 467-474 ◽  
Author(s):  
K. L. Lv ◽  
Y. L. Du ◽  
C. M. Wang

Carboxylated chitosan (CKCTS) was prepared for the removal of Cd(II), Pb(II), and Cu(II) from aqueous solutions. The effects of experimental parameters such as pH value, initial concentration, contact time and temperature on the adsorption were studied. From the results we can see that the adsorption capacities of Cd(II), Pb(II), and Cu(II) increase with increasing pH of the solution. The kinetic rates were best fitted to the pseudo-second-order model. The adsorption equilibrium data were fitted well with the Langmuir isotherm, which revealed that the maximum adsorption capacities for monolayer saturation of Cd(II), Pb(II), and Cu(II) were 0.555, 0.733 and 0.827 mmol/g, respectively. The adsorption was an exothermic process.


2014 ◽  
Vol 881-883 ◽  
pp. 519-524 ◽  
Author(s):  
Lei Lei Cheng ◽  
Xiao Dong Wei ◽  
Xiao Lei Hao ◽  
Di Ruan ◽  
Shao Ming Yu

In this research, chrysotile nanotubes (ChNTs) were synthesized by the hydrothermal method. Synthetic ChNTs were characterized using XRD, SEM, TEM and N2adsorption-desorption. Adsorption technique was applied for removal of Sr (II) and Nd (III) from aqueous solution by using ChNTs. The process had been investigated as a function of pH and temperature. The experimental data were analyzed using equilibrium isotherm models. The adsorption isotherms are fitted well by Langmuir model, having a maximum adsorption capacities of 102.56 mg·g-1for Sr (II) and 47.44 mg·g-1for Nd (III) at 298 ± 1 K. FTIR and XPS techniques were employed to investigate possible adsorption mechanism.


2012 ◽  
Vol 550-553 ◽  
pp. 2333-2337
Author(s):  
Zhen Yu Li ◽  
Shuang Hu

The adsorption of hexavalent chromium [Cr(VI)] from aqueous solutions using weakly basic ion-exchange resin D301 was studied in this work. The result showed that the adsorption of Cr(VI) was strongly dependent on pH, the optimum condition was investigated at pH 2 and the maximum adsorption capacity was 247.71 mg g-1. The equilibrium datas were fitted well with Langmuir and Redlich–Peterson isotherm models. The pseudo-second-order rate equation was best represented by the adsorption process.


2021 ◽  
Vol 60 (1) ◽  
pp. 365-376
Author(s):  
Xiaoxing Zhang ◽  
Hui Liu ◽  
Jin Yang ◽  
Li Zhang ◽  
Binxia Cao ◽  
...  

Abstract Iron phosphate-modified pollen microspheres (pollen@FePO4) were prepared and applied as sorbents for the removal of heavy metals (Cd2+ and Pb2+) from the aqueous solution. Batch sorption studies were conducted to investigate the effects of solution pH, contact time, sorbent dosage, and metal concentration on the adsorption process. The sorption of Cd2+ and Pb2+ ions on pollen@FePO4 corresponds to the pseudo-second-order model and Langmuir isotherm, which is similar to the unmodified pollen. At pH 5.92, pollen@FePO4 offers maximum adsorption capacities of 4.623 and 61.35 mg·g−1 for Cd2+ and Pb2+, respectively. The faster sorption kinetics and higher adsorption capacities of Cd2+ and Pb2+ ions onto pollen@FePO4 than pollen indicates that it might be a promising material for the removal of heavy metal ions in aqueous solutions. The possible adsorption mechanism involves electrostatic and chemisorption for Cd2+ and mainly complexion for Pb2+.


2017 ◽  
pp. 307-314
Author(s):  
Vesna Vucurovic ◽  
Vladimir Puskas ◽  
Uros Miljic

A simple, low cost, and effective method for the removal of acridine orange (AO), a mutagenic cationic dye, from aqueous model solutions by adsorption onto dried sugar beet pulp (SBP) was evaluated in the present study. The AO removal was enhanced along with the increase of the initial solution pH and dye concentration. It was found that the adsorption process closely follows a pseudo-second-order chemisorption kinetics. The obtained equilibrium data obey both the Freundlich and Langmuir isotherm models. The SBP was proved to be very promising adsorbent for AO removal. Maximum adsorption capacity of the Langmuir monolayer of SBP for AO was found to be 5.37, 34.6, 89.62, 144.53 and 324.58 mg/g, at 25?C for the solution pH of 2, 4, 5, 6, and 8, respectively.


Sign in / Sign up

Export Citation Format

Share Document