scholarly journals Adsorptive removal of pentachlorophenol from aqueous solutions using powdered eggshell

2017 ◽  
Vol 43 (3) ◽  
pp. 10-16 ◽  
Author(s):  
Krzysztof Kuśmierek ◽  
Paulina Idźkiewicz ◽  
Andrzej Świątkowski ◽  
Lidia Dąbek

AbstractThe usefulness of untreated powdered eggshell as low-cost adsorbent for the removal of pentachlorophenol (PCP) from aqueous solutions was investigated. The most important parameters affecting the adsorption process, including the pH and ionic strength, were examined. The adsorption characteristics of PCP onto eggshell were evaluated in terms of kinetic and equilibrium parameters. The kinetic data were studied in terms of the pseudo-first order, pseudo-second order and intra-particle diffusion kinetic models. The equilibrium data were analyzed using the Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. The pseudo-second order model best described the adsorption kinetics. Using the Langmuir equation, the monolayer adsorption capacity of eggshell for PCP was found to be 0.127 mg/g. The results showed that PCP can be effectively removed from aqueous solution employing eggshell as a cheap adsorbent.

2014 ◽  
Vol 70 (1) ◽  
pp. 102-107 ◽  
Author(s):  
Caroline Trevisan Weber ◽  
Gabriela Carvalho Collazzo ◽  
Marcio Antonio Mazutti ◽  
Edson Luiz Foletto ◽  
Guilherme Luiz Dotto

Papaya (Carica papaya L.) seeds were used as adsorbent to remove toxic pharmaceutical dyes (tartrazine and amaranth) from aqueous solutions, in order to extend application range. The effects of pH, initial dye concentration, contact time and temperature were investigated. The kinetic data were evaluated by the pseudo first-order, pseudo second-order and Elovich models. The equilibrium was evaluated by the Langmuir, Freundlich and Temkin isotherm models. It was found that adsorption favored a pH of 2.5, temperature of 298 K and equilibrium was attained at 180–200 min. The adsorption kinetics followed the pseudo second-order model, and the equilibrium was well represented by the Langmuir model. The maximum adsorption capacities were 51.0 and 37.4 mg g−1 for tartrazine and amaranth, respectively. These results revealed that papaya seeds can be used as an alternative adsorbent to remove pharmaceutical dyes from aqueous solutions.


2017 ◽  
Vol 68 (1) ◽  
pp. 1-5
Author(s):  
Rodica Elena Patescu ◽  
Claudia Maria Simonescu ◽  
Cristian Onose ◽  
Teodor Laurentiu Busuioc ◽  
Daiana Elena Pasarica ◽  
...  

This research study deals with lead and nickel simultaneous removal from aqueous solutions by the use of chitosan coated cobalt ferrite as adsorbent. Batch removal tests were performed in order to establish the main parameters that influence the sorption capacity, removal efficiency and the selectivity of this adsorbent. The values of sorption capacity for lead and nickel experimentally determined are: 56.23 mg/g and respectively 45.11 mg/g. Langmuir and Freundlich adsorption isotherms were used to interpret the sorption experimental data. The kinetic data were explored by pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The experimental data were well fitted with the pseudo-second order model for both heavy metals. The main conclusion that can be drawn from this research is that this material can be successfully used for the removal of lead and nickel from binary aqueous solutions and wastewater.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 254 ◽  
Author(s):  
Lvshan Zhou ◽  
Tongjiang Peng ◽  
Hongjuan Sun ◽  
Xiaogang Guo ◽  
Dong Fu

A precipitation reaction method was employed to prepare mesopore calcium carbonate (CaCO3) using rape flower pollen as the template. CaCO3 adsorbent was characterized using X-ray diffraction (XRD), scanning electronic microscopy (SEM), and Brunner−Emmet−Teller measurements (BET). The equilibrium adsorption data on amoxicillin were explained using Langmuir, Freundlich, and Temkin adsorption isotherm models. The pseudo-first order, second order, pseudo-second order, and intra-particle diffusion kinetic models were used to explore adsorption kinetics. Equilibrium adsorption of as-prepared CaCO3 was better depicted using the Langmuir adsorption model with an R2 of 0.9948. The separation factor (RL) was found to be in the range of 0 < RL < 1, indicating the favorable adsorption of amoxicillin. The adsorption capacity of mesopore CaCO3 reached 13.49 mg·g−1 in 0.2 g∙L−1 amoxicillin solution. The values of adsorption thermodynamic parameters (ΔHθ, ΔSθ, ΔGθ) were obtained. In addition, the adsorption process turned out to be endothermic and spontaneous for the CaCO3 product at 298 K, 308 K, and 318 K.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Murat Erdem ◽  
Suat Ucar ◽  
Selhan Karagöz ◽  
Turgay Tay

The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II) ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS) analysis after adsorption reveals the accumulation of lead (II) ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.


2012 ◽  
Vol 66 (3) ◽  
pp. 564-572 ◽  
Author(s):  
Görkem Değirmen ◽  
Murat Kılıç ◽  
Özge Çepelioğullar ◽  
Ayşe E. Pütün

In this study, the removal of copper(II) and cadmium(II) ions from aqueous solutions by biosorption onto pine cone was studied. Variables that affect the biosorption process such as pH, biosorbent dosage, initial metal ion concentration, contact time and temperature of solution were optimized. Experimental data were fitted to Langmuir, Freundlich, Dubinin Radushkevich and Temkin isotherm models to investigate the equilibrium isotherms. Pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were used to determine the biosorption mechanism. The thermodynamics of biosorption were studied for predicting the nature of biosorption. Experimental results showed that pine cone could be evaluated as an alternative precursor for removal of heavy metal ions from aqueous solutions, due to its high biosorption capacity, availability, and low cost.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
C. R. Girish ◽  
V. Ramachandra Murty

The present work investigates the potential of Lantana camara, a forest waste, as an adsorbent for the phenol reduction in wastewater. Batch studies were conducted with adsorbent treated with HCl and KOH to determine the influence of various experimental parameters such as pH, contact time, adsorbent dosage, and phenol concentration. The experimental conditions were optimized for the removal of phenol from wastewater. Equilibrium isotherms for the adsorption of phenol were analyzed by Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models. Thermodynamic parameters like the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also determined and they showed that the adsorption process was feasible, spontaneous, and exothermic in the temperature range of 298–328 K. The kinetic data were fitted with pseudo-second-order model. The equilibrium data that followed Langmuir model with the monolayer adsorption capacity was found to be 112.5 mg/g and 91.07 mg/g for adsorbent treated with HCl and KOH, respectively, for the concentration of phenol ranging from 25 to 250 mg/L. This indicates that the Lantana camara was a promising adsorbent for the removal of phenol from aqueous solutions.


2012 ◽  
Vol 66 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Çisem Kırbıyık ◽  
Murat Kılıç ◽  
Özge Çepelioğullar ◽  
Ayşe E. Pütün

In this study an agricultural residue, sesame stalk, was evaluated for the removal of Ni(II) and Zn(II) metal ions from aqueous solutions. Biosorption studies were carried out at different pH, biosorbent dosage, initial metal ion concentrations, contact time, and solution temperature to determine the optimum conditions. The experimental data were modeled by Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Langmuir model resulted in the best fit of the biosorption data. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data and to evaluate rate constants. The best correlation was provided by the second-order kinetic model. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The experimental results showed that sesame stalk can be used as an effective and low-cost biosorbent precursor for the removal of heavy metal ions from aqueous solutions.


2015 ◽  
Vol 50 (4) ◽  
pp. 285-292
Author(s):  
NJ Ara ◽  
MA Rahman ◽  
ASM Alam

This study was to investigate the removal of Remazol Yellow dye from aqueous solutions by adsorption on activated charcoal prepared by chemical activation of saw dust. The dye removal was 85% which was increased to 94% with the addition of 1.0 g of NaCl electrolyte for 50 mL dye solution. The data were well fitted in Langmuir isotherm. The interactions were evaluated with respect to both pseudo-first-order and pseudo-second-order reaction kinetics. The adsorption process was found to follow the pseudo-second-order model. To optimize the operating conditions, the effect of pH, temperature, adsorbent dosage, and initial dye concentration and initial volume of dye solutions were investigated. The obtained results indicated that the utilization of activated charcoal produced from saw dust played an important role in the removal of Remazol Yellow(RY) dye from aqueous solutions. In addition, saw dust was low cost and easily available material. It can be an alternative adsorbent precursor for more expensive adsorbents used for RY removal.Bangladesh J. Sci. Ind. Res. 50(4), 285-292, 2015


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254637
Author(s):  
Ebenezer Ampofo Sackey ◽  
Yali Song ◽  
Ya Yu ◽  
Haifeng Zhuang

The primary purpose of this study is to eliminate Basic Red 46 dye from aqueous solutions utilizing batch experiments by adsorption on biochars prepared from bamboo and rice straw biomass. Biochars prepared from bamboo (B), and rice straw (R) was pyrolyzed at 500°C (B500 and R500). Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, X-ray Diffraction (XRD), and surface area and porosity analyzers were used to characterize the B500 and R500 samples. The characterization results indicated that the biochars possessed an amorphous porous structure with many functional groups consisting primarily of silicates. The adsorption rate of BR46 was evaluated using two kinetic models (pseudo-first-order and pseudo-second-order), and the results indicated that the pseudo-second-order model fitted to the experimental data well (R2>0.99). Nearly 24 h was sufficient to achieve equilibrium with the dye adsorption for the two biochars. R500 had a greater adsorption efficiency than B500. As pH levels increased, the dye’s adsorption capability increased as well. The Langmuir and Freundlich isotherm models were used to investigate the equilibrium behavior of BR46 adsorption, and the equilibrium data fitted well with the Langmuir model (R2>0.99) compared to the Freundlich model (R2>0.89). The maximum adsorption capacities of BR46 are 9.06 mg/g for B500 and 22.12 mg/g for R500, respectively. Additionally, adsorption capacity increased as temperature increased, indicating that adsorption is favored at higher temperatures. The electrostatic interaction is shown to be the dominant mechanism of BR46 adsorption, and BR46 acts as an electron-acceptor, contributing to n-π EDA (Electron Donor-Acceptor) interaction. Thermodynamic parameters for the dye-adsorbent system revealed that the adsorption process is spontaneous and feasible. The values of the adsorption coefficient (Kd) were on the order of 102−103. Kd of R500 was greater than that of B500, indicating that R500 had a greater adsorption capacity. The results showed that R500 could be used as a low-cost alternative adsorbent for removing BR46 from effluents.


Sign in / Sign up

Export Citation Format

Share Document