scholarly journals Potential Impact of Biodegradable Surfactants on Foam-Based Microalgal Cultures

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1640
Author(s):  
María Vázquez ◽  
José Carlos Castilla-Alcántara ◽  
Inés Garbayo ◽  
Carlos Vílchez ◽  
María Cuaresma

Microalgae cultivation in liquid foams is a promising concept which requires the use of a surfactant as a foam stabilizing agent. The biodegradable character of a surfactant is a key aspect regarding its applicability in a liquid foam-bed photobioreactor (LF-PBR), since it might influence microalgal growth and the stability of the foam-based cultivation. In this work, the effects of the biodegradable surfactants bovine serum albumin (BSA), Saponin and Tween 20 on the whole microbial community of microalgal cultures (i.e., microalgal and bacterial populations) were studied. The three surfactants enhanced bacterial and microalgal growth in non-axenic microalgal cultures, but they differed in their efficiency to sustain bacterial growth. In this sense, Saponin was proven to enhance the growth of S. obliquus-associated bacteria in microalgae-free cultures, and to sustain it even when other nutrients were lacking, suggesting that Saponin can be used as an energy and nutrients source by these bacteria. The degradation and consumption of Saponin by S. obliquus-associated bacteria was also confirmed by the foaming capacity decrease in Saponin-added bacterial cultures. The biodegradable character of BSA, Saponin and Tween 20 reduces their suitability to be used in a LF-PBR since they would not be able to maintain stable foaming.

2008 ◽  
Vol 22 (15) ◽  
pp. 2333-2354 ◽  
Author(s):  
QICHENG SUN ◽  
LIANGHUI TAN ◽  
GUANGQIAN WANG

Liquid foams are concentrated dispersions of gas bubbles in a small amount of surfactant solution, which are perpetually out of equilibrium systems. The process of liquid draining through networks of Plateau borders in a fresh foam is so-called foam drainage, as a result of both gravitational and capillary forces, which has great effect on the stability of foams. From the view of foam physics and dynamics, this paper briefly introduces foam structure and major lifetime limiting factors of foam. The substantial progress on the theory of drainage, measuring techniques for liquid fractions, drainage in both one dimension and two dimensions, and drainage in microgravity circumstances are overviewed throughout. Remaining tasks are discussed and a multiscale methodology for foam drainage is proposed for future investigations.


2018 ◽  
Vol 56 (1) ◽  
pp. 361-380 ◽  
Author(s):  
Britt Koskella ◽  
Tiffany B. Taylor

Plant-associated bacteria face multiple selection pressures within their environments and have evolved countless adaptations that both depend on and shape bacterial phenotype and their interaction with plant hosts. Explaining bacterial adaptation and evolution therefore requires considering each of these forces independently as well as their interactions. In this review, we examine how bacteriophage viruses (phages) can alter the ecology and evolution of plant-associated bacterial populations and communities. This includes influencing a bacterial population's response to both abiotic and biotic selection pressures and altering ecological interactions within the microbiome and between the bacteria and host plant. We outline specific ways in which phages can alter bacterial phenotype and discuss when and how this might impact plant-microbe interactions, including for plant pathogens. Finally, we highlight key open questions in phage-bacteria-plant research and offer suggestions for future study.


Author(s):  
Lizhen Lin ◽  
Hongxia Ge ◽  
Rongjun Cheng

Under the Vehicle-to-Vehicle (V2V) environment, connected vehicles (CVs) can share the traveling information with each other to keep the traffic flow stable. However, the open network cooperation environment makes CVs vulnerable to cyberattacks, which leads to changes in driving behavior. The existing theories divide cyberattacks into three types: bogus information, replay/delay and collusion cyberattacks. In addition, the mixed flow consisting of truck and car is a common form of road traffic. In order to clarify the potential impact of cyberattacks on mixed traffic flow, this paper proposes an extended car-following model considering cyberattacks under CVs environment. Subsequently, the stability of the model is analyzed theoretically, and the stability condition of the model is obtained. The numerical simulation is carried out and the result shows that the cyberattacks lead to different degrees of traffic behavior hazards such as queue time extension, congestion and even rear end collision. Among them, cooperative attack is the most serious.


2019 ◽  
Vol 166 ◽  
pp. 115068 ◽  
Author(s):  
Jake W. O'Brien ◽  
Phil M. Choi ◽  
Jiaying Li ◽  
Phong K. Thai ◽  
Guangming Jiang ◽  
...  

2020 ◽  
Vol 83 (4) ◽  
pp. 661-667
Author(s):  
ADRIENNE E. H. SHEARER ◽  
KALMIA E. KNIEL

ABSTRACT Noroviruses encounter numerous and diverse bacterial populations in the host and environment, but the impact of bacteria on norovirus transmission, infection, detection, and inactivation are not well understood. Tulane virus (TV), a human norovirus surrogate, was exposed to viable bacteria, bacterial metabolic products, and bacterial cell constituents and was evaluated for impact on viral recovery, propagation, and inactivation resistance, respectively. TV was incubated with common soil, intestinal, skin, and phyllosphere bacteria, and unbound viruses were recovered by centrifugation and filtration. TV recovery from various bacterial suspensions was not impeded, which suggests a lack of direct, stable binding between viruses and bacteria. The cell-free supernatant (CFS) of Bifidobacterium bifidum 35914, a bacterium that produces glycan-modifying enzymes, was evaluated for effect on the propagation of TV in LLC-MK2 cells. CFS did not limit TV propagation relative to TV absent of CFS. The impact of Escherichia coli O111:B4 lipopolysaccharide (LPS) and Bacillus subtilis peptidoglycan (PEP) on TV thermal and chlorine inactivation resistance was evaluated. PEP increased TV thermal and chlorine inactivation resistance compared with control TV in phosphate-buffered saline (PBS). TV suspended in PBS and LPS was reduced by more than 3.7 log at 60°C, whereas in PEP, TV reduction was approximately 2 log. Chlorine treatment (200 ppm) rendered TV undetectable (>3-log reduction) in PBS and LPS; however, TV was still detected in PEP, reduced by 2.9 log. Virus inactivation studies and food processing practices should account for potential impact of bacteria on viral resistance.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Kirstine Klitgaard ◽  
Mikael L. Strube ◽  
Anastasia Isbrand ◽  
Tim K. Jensen ◽  
Martin W. Nielsen

ABSTRACT At present, very little information exists regarding what role the environmental slurry may play as an infection reservoir and/or route of transmission for bovine digital dermatitis (DD), a disease which is a global problem in dairy herds. To investigate whether DD-related bacteria belong to the indigenous microbiota of the dairy herd environment, we used deep amplicon sequencing of the 16S rRNA gene in 135 slurry samples collected from different sites in 22 dairy farms, with and without DD-infected cows. Both the general bacterial populations and digital dermatitis-associated Treponema were targeted in this study. The results revealed significant differences in the bacterial communities between the herds, with only 12 bacterial taxa shared across at least 80% of all the individual samples. These differences in the herd microbiota appeared to reflect mainly between-herd variation. Not surprisingly, the slurry was dominated by ubiquitous gastrointestinal bacteria, such as Ruminococcaceae and Lachnospiraceae. Despite the low relative abundance of spirochetes, which ranged from 0 to 0.6%, we were able to detect small amounts of bacterial DNA from DD-associated treponemes in the slurry. However, the DD-associated Treponema spp. were detected only in samples from herds with reported DD problems. These data indicate that treponemes involved in the pathogenesis of DD are not part of the normal environmental microflora in dairy herds without clinical DD and, consequently, that slurry is not a primary reservoir of infection. IMPORTANCE Bovine digital dermatitis (DD), a dermal disease which causes lameness in dairy cattle, is a serious problem worldwide. To control this disease, the infection reservoirs and transmission routes of DD pathogens need to be clarified. The dairy herd slurry may be a pathogen reservoir of DD-associated bacteria. The rationale for the present study was, therefore, to examine whether DD-associated bacteria are always present in slurry or if they are found only in DD-afflicted herds. The results strongly indicated that DD Treponema spp. are not part of the indigenous slurry and, therefore, do not comprise an infection reservoir in healthy herds. This study applied next-generation sequencing technology to decipher the microbial compositions of environmental slurry of dairy herds with and without digital dermatitis.


2017 ◽  
Author(s):  
Debra A Brock ◽  
Alicia Canas ◽  
Kai Jones ◽  
David C Queller ◽  
Joan E Strassmann

Background. Interactions between eukaryotic amoebae and bacteria are understudied and important. Bacteria inside of amoebae are protected from external forces including antibiotics. An excellent model for bacteria-amoeba interactions is the social amoeba Dictyostelium discoideum and its associated bacteria. A third of wild-collected clones of the soil-dwelling amoeba Dictyostelium discoideum exhibit a suite of characteristics that make them simple farmers of bacteria. They carry bacteria internally through the social spore-making stage. They then release these bacteria to grow and subsequently eat them, prudently stopping before they are entirely consumed so some bacteria can be carried to the next generation. D. discoideum defend their food bacteria with other inedible bacteria that produce compounds toxic to non-farmers. Both carried bacteria and social amoeba hosts have demonstrated co-evolved characteristics. Most farmer clones discovered to date carry inedible Burkholderia in addition to food bacteria, but it is not clear whether or not a preponderance of naïve bacteria might induce the farming state by overwhelming the phagocytic actions of the host amoebae. In this study we address this question with D. discoideum clones that naturally carry bacteria and those that do not. Will naïve bacteria in large numbers succeed in colonizing the amoebae? Methods. We grew five non-farmer clones and five farmer clones of wild-collected Dictyostelium discoideum on three different concentrations of a highly palatable bacterial food source, Klebsiella pneumoniae. We then tested them to see if they carried bacteria through the social stage. Results. We found that bacterial density did not have a significant effect on whether or not the clones carried bacteria through the social stage. Even those grown in very dense bacterial cultures were able to shed them successfully unless they were also carrying Burkholderia. Discussion. Our results indicate that even a preponderance of food bacteria cannot overwhelm the ability of social amoebae to digest and not carry bacteria. Apparently, only the inedible Burkholderia have that effect. This points to the importance of understanding co-infection with multiple bacteria because those that cannot induce carriage can nevertheless become carried, foiling digestive processes, but only in the presence of another bacterium. Future studies of host bacteria interactions should consider using multiple bacteria simultaneously.


2020 ◽  
Vol 638 ◽  
pp. A79 ◽  
Author(s):  
D. Nóbrega-Siverio ◽  
J. Martínez-Sykora ◽  
F. Moreno-Insertis ◽  
M. Carlsson

Context. Ambipolar diffusion is a physical mechanism related to the drift between charged and neutral particles in a partially ionized plasma that is key to many different astrophysical systems. However, understanding its effects is challenging due to basic uncertainties concerning relevant microphysical aspects and the strong constraints it imposes on the numerical modeling. Aims. Our aim is to introduce a numerical tool that allows us to address complex problems involving ambipolar diffusion in which, additionally, departures from ionization equilibrium are important or high resolution is needed. The primary application of this tool is for solar atmosphere calculations, but the methods and results presented here may also have a potential impact on other astrophysical systems. Methods. We have developed a new module for the stellar atmosphere Bifrost code that improves its computational capabilities of the ambipolar diffusion term in the generalized Ohm’s law. This module includes, among other things, collision terms adequate to processes in the coolest regions in the solar chromosphere. As the main feature of the module, we have implemented the super time stepping (STS) technique, which allows an important acceleration of the calculations. We have also introduced hyperdiffusion terms to guarantee the stability of the code. Results. We show that to have an accurate value for the ambipolar diffusion coefficient in the solar atmosphere it is necessary to include as atomic elements in the equation of state not only hydrogen and helium, but also the main electron donors like sodium, silicon, and potassium. In addition, we establish a range of criteria to set up an automatic selection of the free parameters of the STS method that guarantees the best performance, optimizing the stability and speed for the ambipolar diffusion calculations. We validate the STS implementation by comparison with a self-similar analytical solution.


Sign in / Sign up

Export Citation Format

Share Document