scholarly journals Evaluation of Sand Filtration and Activated Carbon Adsorption for the Post-Treatment of a Secondary Biologically-Treated Fungicide-Containing Wastewater from Fruit-Packing Industries

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1223
Author(s):  
Konstantinos Azis ◽  
Zografina Mavriou ◽  
Dimitrios G. Karpouzas ◽  
Spyridon Ntougias ◽  
Paraschos Melidis

In this work, a sand filtration-activated carbon adsorption system was evaluated to remove the fungicide content of a biologically treated effluent. The purification process was mainly carried out in the activated carbon column, while sand filtration slightly contributed to the improvement of the pollutant parameters. The tertiary treatment system, which operated under the batch mode for 25 bed volumes, resulted in total and soluble COD removal efficiencies of 76.5 ± 1.5% and 88.2 ± 1.3%, respectively, detecting total COD concentrations below 50 mg/L in the permeate of the activated carbon column. A significant pH increase and a respective electrical conductivity (EC) decrease also occurred after activated carbon adsorption. The total and ammonium nitrogen significantly decreased, with determined concentrations of 2.44 ± 0.02 mg/L and 0.93 ± 0.19 mg/L, respectively, in the activated carbon permeate. Despite that, the initial imazalil concentration was greater than that of the fludioxonil in the biologically treated effluent (i.e., 41.26 ± 0.04 mg/L versus 7.35 ± 0.43 mg/L, respectively). The imazalil was completely removed after activated carbon adsorption, while a residual concentration of fludioxonil was detected. Activated carbon treatment significantly detoxified the biologically treated fungicide-containing effluent, increasing the germination index by 47% in the undiluted wastewater or by 68% after 1:1 v/v dilution.

2014 ◽  
Vol 919-921 ◽  
pp. 2149-2152
Author(s):  
Ya Feng Li ◽  
Chun Fei Wei

Using microwave-ferrous sulfate modified activated carbon adsorption manner to remove the high concentration of phosphorus in wastewater. The power of microwavethe concentration of ferrous sulfate and reaction time on phosphorus removal were studied. When the power of microwave was 425W,the concentration of ferrous sulfate was 0.1mol/L,reaction time was 50 min,the removal rate of TP reaches 95.67%,the treated effluent TP can be dropped to 0.48mg/L,the TP can reaches the first effluent standard of TP in the comprehensive wastewater discharge standard (GB8978-1996).Microwave-ferrous sulfate modified activated carbon is adapted to treat high concentration phosphorus in the wastewater.


1975 ◽  
Vol 10 (1) ◽  
pp. 28-32
Author(s):  
M-C. Bertrandy ◽  
K.L. Murphy ◽  
A. Benedek

Abstract Organic compounds present in wastewater can be removed by established biological processes or by the recently developed physicochemical process wherein organics in the sewage are adsorbed on activated carbon after coagulation and sand filtration. In both adsorption and bio-oxidation, residuals have been observed. Theoretically, a combination of both processes should remove these residuals, but to date, evidence is lacking to support this hypothesis. This study evaluated biological and adsorption residuals singly and in combination.


1994 ◽  
Vol 29 (8) ◽  
pp. 221-233
Author(s):  
Shimshon Belkin ◽  
Asher Brenner ◽  
Alon Lebel ◽  
Aharon Abeliovich

A case study is presented, in which two approaches to the treatment of complex chemical wastewater are experimentally compared: an end-of-pipe “best available technology” option and an in-plant source segregation program. Both options proved to be feasible. Application of the powdered activated carbon treatment (PACT™) process for the combined end-of-pipe stream yielded up to 93% reduction of dissolved organic carbon, with complete toxicity elimination. In order to examine the potential for applying a conventional activated sludge process, a simplified laboratory screening procedure was devised, aimed at establishing baseline data of removability potential, defined either by biodegradation, activated carbon adsorption or volatilization. Using this procedure, the major source of the non-biodegradable fraction in the combined park's wastewater was traced to a single factory, from which twelve individual source streams were screened. The results allowed the division of the tested sources into three groups: degradable, volatile, and problematic. A modified wastewater segregation and treatment program was accordingly proposed, which should allow an efficient and environmentally acceptable solution. This program is presently at its final testing stages, at the conclusion of which a full comparison between the two approaches will be carried out.


1998 ◽  
Vol 32 (6) ◽  
pp. 1841-1851 ◽  
Author(s):  
Lois J. Uranowski ◽  
Charles H. Tessmer ◽  
Radisav D. Vidic

2011 ◽  
Vol 243-249 ◽  
pp. 4956-4959
Author(s):  
Jian Chao Hao ◽  
Hui Fen Liu ◽  
Dong Ling Wei ◽  
Li Jun Shi ◽  
Jun Li Li ◽  
...  

The relationship between formaldehyde emission and time was researched and a mathematical model was developed which describes the variation of formaldehyde with time in the airtight chamber. It was found that high quality composite floor was in line with 0-order kinetic equation and low quality composite floor was in line with 1-order kinetic equation. Besides, the effect of activated carbon adsorption on formaldehyde was studied and the result showed that activated carbon had poor adsorption on formaldehyde for weak van der waals force.


Sign in / Sign up

Export Citation Format

Share Document