scholarly journals Coordinated Development of Water Environment Protection and Water Ecological Carbon Sink in Baiyangdian Lake

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2066
Author(s):  
Yanli Li ◽  
Jinxu Lv ◽  
Lijun Li

“The Hebei Xiongan New Area Planning Outline” states that the carbon sink of the water body should be improved and the quality of Baiyangdian water should be improved by cleaning the sludge, but the treatment of endogenous pollution in the water body will release a large amount of carbon dioxide, which will reduce the carbon sink of Baiyangdian, which makes the improvement of water body quality and increasing carbon sink conflicting. In order to realize the coordinated development of Baiyangdian water quality improvement and carbon sink increase, this paper establishes the calculation model of the amount of sludge to be cleared to improve the unit water quality and the amount of carbon dioxide released by clearing the silt using the release flux and diffusion flux of nitrogen and phosphorus elements in the water body, and the relationship between the content of nitrogen and phosphorus elements, the depth of Baiyangdian sludge excavation and the amount of carbon dioxide released: as the content of nitrogen and phosphorus elements in the water decreases, the depth of sludge excavated to improve the unit water body increases, and the amount of carbon dioxide released gradually increases. As the nitrogen and phosphorus content in the water decreases, the depth of dredged sludge to improve the quality of the water body increases, the carbon dioxide released gradually increases, and when the nitrogen and phosphorus concentration reaches 0.18 g/m3 and 0.6 g/m3 respectively, the carbon dioxide released will increase exponentially. Thus, we propose countermeasures to improve the water quality of Baiyangdian and increase the carbon sink capacity: we can improve the water quality by reasonable dredging before the water quality reaches poor category 3; we can achieve the dual goals of improving the water quality and increasing the carbon sink by increasing the reed planting area.

2000 ◽  
Vol 42 (3-4) ◽  
pp. 115-123 ◽  
Author(s):  
R. Shoji ◽  
A. Sakoda ◽  
Y. Sakai ◽  
M. Suzuki

The quality of environmental waters such as rivers is often deteriorated by various kinds of trace and unidentified chemicals despite the recent development of sewage systems and wastewater treatment technologies. In addition to contamination by particular toxicants, complex toxicity due to multi-component chemicals could be much more serious. The environmental situation in bodies of water in Japan led us to apply bioassays for monitoring the water quality of environmental waters in order to express the direct and potential toxicity to human beings and ecosystems rather than determinating concentrations of particular chemicals. However, problems arose from the fact that bioassays for pharmaceutical purposes generally required complicated, time-consuming, expert procedures. Also, a methodology for feedback of the resultant toxicity data to water environment management has not been established yet. To this end, we developed a novel bioassay based on the low-density lipoprotein (LDL) uptake activity of human hepatoblastoma cells. The assay enabled us to directly detect the toxicity of environmental waters within 4 hours of exposure. This is a significantly quick and easy procedure as compared to that of conventional bioassays. The toxicity data for 255 selected chemicals and environmental waters obtained by this method were organized by a mathematical equation in order to make those data much more effectively and practically useful to the management of environmental waters. Our methodology represents a promising example of applying bioassays to monitor environmental water quality and generating potential solutions to the toxicity problems encountered.


Author(s):  
Xing Wang ◽  
Binghui Zheng ◽  
Lusan Liu ◽  
Lijing Wang

<p>A Lake Multi-biotic Integrity Index (LMII) for the China’s second largest interior lake (Dongting Lake) was developed to assess the water quality status using algal and macroinvertebrate metrics. Algae and benthic macroinvertebrate assemblages were sampled at 10 sections across 3 subregions of Dongting Lake. We used a stepwise process to evaluate properties of candidate metrics and selected ten for the LMII: Pampean diatom index, diatom quotient, trophic diatom index, relative abundance diatoms, Margalef index of algae, percent sensitive diatoms, % facultative individuals, % Chironomidae individuals, % predators individuals, and total number of macroinvertebrate taxa. We then tested the accuracy and feasibility of the LMII by comparing the correlation with physical-chemical parameters. Evaluation of the LMII showed that it discriminated well between reference and impaired sections and was strongly related to the major chemical and physical stressors (r = 0.766, P&lt;0.001). The re-scored results from the 10 sections showed that the water quality of western Dongting Lake was good, while that of southern Dongting Lake was relatively good and whereas that of eastern Dongting Lake was poor. The discriminatory biocriteria of the LMII are suitable for the assessment of the water quality of Dongting Lake. Additionally, more metrics belonging to habitat, hydrology, physics and chemistry should be considered into the LMII, so as to establish comprehensive assessment system which can reflect the community structure of aquatic organisms, physical and chemical characteristics of water environment, human activities, and so on.</p>


2016 ◽  
Vol 19 (2) ◽  
pp. 107-117
Author(s):  
Trang Thi Thuy Nguyen ◽  
Khoi Nguyen Dao

The objective of this study was to simulate the hydrologic characteristic and water quality of 3S rivers system (Sekong, Sesan and Srepok) using SWAT model (Soil and Water Analysis Tool). Agriculture and forest are the main land use types in this basin accounting for more than 80 % of the total area. Therfore, nitrogen and phosphorus were selected to be parameters for water quality assessment. SWAT-CUP model was applied to calibrate the model for stream flow and water quality based on SUFI-2 (Sequential Uncertainty Fitting version 2) method. The model performance has been assessed by three statistical indices, including coefficient corellation (R2), Nash-Sutcliffe efficient coefficience (NSE) and percentage Bias (PBIAS). The results showed that SWAT model was well calibrated for simulating the streamflow and water quality with the values of R2 greater than 0.5 except for the Attapeu and Kontum stations, and of PBIAS less than 10 % and 35 % for streamflow and water quality, respectively. The well-calibrated SWAT model can be applied in predicting the hydrology and water quality for other application. Furthermore, it is a tool supporting the policy makers to offer a suitable decisions regarding the sustainable river basin management.


Author(s):  
W. D’Alessandro ◽  
S. Bellomo ◽  
L. Brusca ◽  
S. Karakazanis ◽  
K. Kyriakopoulos ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 20
Author(s):  
Kairat Ospanov ◽  
Timur Rakhimov ◽  
Menlibai Myrzakhmetov ◽  
Dariusz Andraka

The paper presents the results of research on the environmental impact of sewage ponds serving the city of Kostanay (Kazakhstan). The scope of the research included the determination of basic quality parameters of raw and treated wastewater, an analysis of the chemical composition of groundwater in the vicinity of sewage ponds, and the analysis of the water quality of the Tobol River. The obtained results indicate that sewage from storage ponds, infiltrating into the ground, caused groundwater pollution in the area of about 100 km2 around the reservoirs. Due to the fact that the groundwater aquifer in the vicinity of sewage ponds feeds the Tobol River, it also affects water quality in the river, which does not meet the requirements for most of the analyzed parameters.


2018 ◽  
Vol 246 ◽  
pp. 02030
Author(s):  
Xingyi Xu ◽  
Chuqiu Xiao ◽  
Chunyan Hu ◽  
Guiyuan Li ◽  
Xiang Gao ◽  
...  

According to the daily flow data collected by three representative hydrological stations in the Xiangjiang River basin which are the Guiyang station in the upstream section, the Hengshan station in the midstream section, and the Xiangtan station in the downstream section, and the water environment data collected from the Hunan Water Resources Bulletin, Mann-Kendal method was used to analyze the changes of the annual average flow of the Xiangjiang River basin in the past 20 years as well as the variation of water environment quality in the whole year, flood season and non-flood season. Based on these analysis, the evolution trend of water resources and water environment in the Xiangjiang River basin is further forecasted. The results show that the annual runoff of the upper reaches of the Xiangjiang River basin tends to be stable, and the runoff of the middle and lower reaches is decreasing. The water quality of the Xiangjiang River basin got deteriorated from 1996 to 2010. A sudden change occurred around 2012, and the water quality of the basin gradually improved.


2014 ◽  
Vol 675-677 ◽  
pp. 367-370
Author(s):  
Ya Yun Liu ◽  
Zi Kun Chen ◽  
Ke Jun Ren ◽  
Yan Jia ◽  
Yue Xian Guo ◽  
...  

Butterfly Lake provides an important function of ecological environment and campus service for Guangdong Ocean University. Based on the data which were collected in March,May, September and December in 2013, the water environment quality of Butterfly Lake was assessed. The results show that the key pollutant of Butterfly Lake is total phosphorus (TP). The average concentration of TP is worse than the national quality standards for Class V. The water quality appears an obvious difference in different monitoring time. In September the water quality is the best. The average of single parameter pollution index (Sj) is 0.75 and the water quality belongs to good environment area. The average of integrated parameter pollution index (WQI) is 1.76 and the water quality belongs to light pollution area. In December the water quality is the worst. Sj and WQI is 1.14 and 3.14. The water quality belongs to light pollution area and moderate pollution area, respectively. The comprehensive trophic state index is 70.38 in December. The eutrophication level is hyper eutropher. The other monitoring time belongs to middle eutropher. In order to improve the water quality of Butterfly Lake,the valid measure is to strengthen the management of wastewater discharge from the laboratory and the dormitory.


2013 ◽  
Vol 777 ◽  
pp. 420-423
Author(s):  
Chen Xi Mi

Through the analysis on the data of monitoring water quality of typical reservoirs in Liaoning province, the major reservoirs in the province are in the state of mesotrophication or even eutrophication. The main pollutants are DO-consumption organic pollutants such as ammonia nitrogen and phosphorus. Despite years of special treatment, quality indexes about such nutrients are still high and they severely restrict improvement of the water quality. On the basis of the primary research, this article analyses the main reason for production of phosphorus and nitrogen, estimates the annual load of non point sources pollution and provides a basis for controlling of the pollution.


Author(s):  

Upgrading of the national standardization system creates favorable conditions for support and normal promotion of integrated environmental standards as a toolbox for control of the process of minimization of adverse impacts with their concurrent accounting and possible redistribution among the environment elements, i.e. air, water bodies, and soils. In the Russian practice of environmental protection there is no any objective toolbox for comprehensive assessment of the current activities’ negative impact. In outlook adoption of the negative impact minimization mechanism is most probable through the many-year benchmarking with European expertise based on the revealing of cause-eff ect relations in terms of «relative improvement of technique against the attained quality of environment (objectives)». Water bodies are subjected both to direct and indirect negative impact. There is no one method for assessment of water bodies’ environmental safety as a basis for adoption of adequate solutions in water sector. The developed standards on the basis of water/economic activities without considerable emissions to air and to soils propose a toolbox to secure uniform quantitative assessment both the techniques negative impact through assessment of their waste water quality and assessment of water quality of the receiving water body. The developed toolbox provides detection of the «negative impact – water body water quality» causeeffect relations. Integrated criteria proposed in the standards provide ranking and classifying of negative impact objects, detection and identification of the national water/economic best available techniques, implementation of the combined approach in the process of adoption of integrated environmental permissions.


Sign in / Sign up

Export Citation Format

Share Document