scholarly journals Effects of Selection of Inlet Perturbations, Multiphase and Turbulence Equations on Slug Flow Characteristics Using Altair® AcuSolve™

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2152
Author(s):  
Mohammad Sobir Abdul Basith ◽  
Nabihah Sallih ◽  
William Pao King Soon ◽  
Shinji Thomas Shibano ◽  
Ramesh Singh ◽  
...  

Selection of inlet perturbations, multiphase equations, and the turbulence equation may affect the development of slug flow using computational fluid dynamic simulation tools. The inlet perturbation, such as sinusoidal and random perturbations, play an essential role in inducing slug formation. Multiphase equations such as volume of fluid and level set methods are used to track and capture the gas-liquid immiscible interface. Similarly, turbulence equations such as Spalart Allmaras (SA), Detached Eddy Simulations (DES), k-omega, and k-epsilon can be used to predict the evolution of turbulence within the flow. At present, no direct comparison is available in the literature on the selection of (i) types of inlet perturbations, (ii) the choice of multiphase equations, and (iii) the turbulence equation on the development of slug flow using the Altair computational package. This article aims to compare the effects of the selection of inlet perturbations, multiphase models and turbulence equations on slug flow characteristics using Altair® AcuSolve™. The findings by Altair® simulation were compared to published experimental data and simulation works using ANSYS and STAR-CCM+. The slug flow characteristics of interest include slug morphology, a body length-to-diameter ratio, velocity, frequency, and pressure gradient. It was found that the slug flow could be developed for all combinations of settings. Although level set approach in Altair® can track fluid motion successfully, it has a limitation in modelling the convective transport of the multiphase mixture well, unlike ANSYS and STAR-CCM+. Compared to the standard level set method, the coupling of back-and-forth error compensation and correction with the level set function helps to capture the internal boundary more accurately by reducing errors caused by numerical diffusion in the transport of the level set. It was revealed that the Spalart Allmaras turbulence equation could mimic published experimental result better than DES as it produced the closest slug translational velocity. Since the frequency of the slugs for the developed models showed a good agreement with the published data, the models could be sufficient for the investigation of fluid-structure interaction.

Author(s):  
Achinie Warusevitane ◽  
Kathy Johnson ◽  
Stephen Ambrose ◽  
Mike Walsh ◽  
Colin Young

Abstract Civil aero-engines contain two or three shafts that are supported by bearings. Seals are required both between pairs of rotating shafts and between static elements and shafts. Seals located between two co/contra rotating shafts within the bearing chamber are known as intershaft seals and are typically classified as either hydraulic or oil backed. This paper focuses on research relevant to intershaft hydraulic seals. A hydraulic seal is formed by a seal fin on the inner shaft immersed in an annulus of oil in the outer shaft where the oil in the annulus is centrifuged outwards by the radial pressure gradient. Once formed a hydraulic seal does not allow air to flow across the seal and any pressure difference across the seal creates different oil levels either side of the fin. Despite their reliable operation with zero leakage, the application of hydraulic seals is restricted due to temperature limitations, oil degradation and coking. Research and development of the next generation of hydraulic seals needs to focus on addressing these issues so that the seals can be utilized in hotter zones in future engines. Understanding of the detailed fluid dynamic behaviour during hydraulic seal operation is relatively limited with very little published data. There is an acknowledged need for improved knowledge and this is the context for the current study. The ability to accurately computationally model hydraulic seals is highly desirable. Prior experimental and analytical investigations into fully and partially wetted rotating disks have been used to aid understanding of the performance and flow characteristics of hydraulic seals as there are many geometric and operational similarities. These fundamental experimental investigations in the literature provide validation data that allows the authors to establish a CFD modelling methodology. This paper initially compares the flow characteristics of a fully wetted rotating disk against experimental results available in literature including the radial and tangential velocity components. This paper subsequently investigates the flow characteristics of a partially wetted disk by examining the effect on the angular velocity of the fluid core with varying engagement and spacing ratios for two flow regimes.


2006 ◽  
Vol 258-260 ◽  
pp. 586-591
Author(s):  
António Martins ◽  
Paulo Laranjeira ◽  
Madalena Dias ◽  
José Lopes

In this work the application of delay differential equations to the modelling of mass transport in porous media, where the convective transport of mass, is presented and discussed. The differences and advantages when compared with the Dispersion Model are highlighted. Using simplified models of the local structure of a porous media, in particular a network model made up by combining two different types of network elements, channels and chambers, the mass transport under transient conditions is described and related to the local geometrical characteristics. The delay differential equations system that describe the flow, arise from the combination of the mass balance equations for both the network elements, and after taking into account their flow characteristics. The solution is obtained using a time marching method, and the results show that the model is capable of describing the qualitative behaviour observed experimentally, allowing the analysis of the influence of the local geometrical and flow field characteristics on the mass transport.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750063 ◽  
Author(s):  
A. M. Hegab ◽  
S. A. Gutub ◽  
A. Balabel

This paper presents the development of an accurate and robust numerical modeling of instability of an interface separating two-phase system, such as liquid–gas and/or solid–gas systems. The instability of the interface can be refereed to the buoyancy and capillary effects in liquid–gas system. The governing unsteady Navier–Stokes along with the stress balance and kinematic conditions at the interface are solved separately in each fluid using the finite-volume approach for the liquid–gas system and the Hamilton–Jacobi equation for the solid–gas phase. The developed numerical model represents the surface and the body forces as boundary value conditions on the interface. The adapted approaches enable accurate modeling of fluid flows driven by either body or surface forces. The moving interface is tracked and captured using the level set function that initially defined for both fluids in the computational domain. To asses the developed numerical model and its versatility, a selection of different unsteady test cases including oscillation of a capillary wave, sloshing in a rectangular tank, the broken-dam problem involving different density fluids, simulation of air/water flow, and finally the moving interface between the solid and gas phases of solid rocket propellant combustion were examined. The latter case model allowed for the complete coupling between the gas-phase physics, the condensed-phase physics, and the unsteady nonuniform regression of either liquid or the propellant solid surfaces. The propagation of the unsteady nonplanar regression surface is described, using the Essentially-Non-Oscillatory (ENO) scheme with the aid of the level set strategy. The computational results demonstrate a remarkable capability of the developed numerical model to predict the dynamical characteristics of the liquid–gas and solid–gas flows, which is of great importance in many civilian and military industrial and engineering applications.


2018 ◽  
Vol 8 (12) ◽  
pp. 2393 ◽  
Author(s):  
Lin Sun ◽  
Xinchao Meng ◽  
Jiucheng Xu ◽  
Shiguang Zhang

When the level set algorithm is used to segment an image, the level set function must be initialized periodically to ensure that it remains a signed distance function (SDF). To avoid this defect, an improved regularized level set method-based image segmentation approach is presented. First, a new potential function is defined and introduced to reconstruct a new distance regularization term to solve this issue of periodically initializing the level set function. Second, by combining the distance regularization term with the internal and external energy terms, a new energy functional is developed. Then, the process of the new energy functional evolution is derived by using the calculus of variations and the steepest descent approach, and a partial differential equation is designed. Finally, an improved regularized level set-based image segmentation (IRLS-IS) method is proposed. Numerical experimental results demonstrate that the IRLS-IS method is not only effective and robust to segment noise and intensity-inhomogeneous images but can also analyze complex medical images well.


Author(s):  
Guangfa Yao

Immersed boundary method has got increasing attention in modeling fluid-solid body interaction using computational fluid dynamics due to its robustness and simplicity. It usually simulates fluid-solid body interaction by adding a body force in the momentum equation. This eliminates the body conforming mesh generation that frequently requires a very labor-intensive and challenging task. But accurately tracking an arbitrary solid body is required to simulate most real world problems. In this paper, a few methods that are used to track a rigid solid body in a fluid domain are briefly reviewed. A new method is presented to track an arbitrary rigid solid body by solving a transformation matrix and identifying it using a level set function. Knowing level set function, the solid volume fraction can be derived if needed. A three-dimensional example is used to study a few methods used to represent and solve the transformation matrix, and demonstrate the presented new method.


2020 ◽  
Vol 63 (1) ◽  
pp. 1-20
Author(s):  
S. J. van den Boom ◽  
J. Zhang ◽  
F. van Keulen ◽  
A. M. Aragón

AbstractDuring design optimization, a smooth description of the geometry is important, especially for problems that are sensitive to the way interfaces are resolved, e.g., wave propagation or fluid-structure interaction. A level set description of the boundary, when combined with an enriched finite element formulation, offers a smoother description of the design than traditional density-based methods. However, existing enriched methods have drawbacks, including ill-conditioning and difficulties in prescribing essential boundary conditions. In this work, we introduce a new enriched topology optimization methodology that overcomes the aforementioned drawbacks; boundaries are resolved accurately by means of the Interface-enriched Generalized Finite Element Method (IGFEM), coupled to a level set function constructed by radial basis functions. The enriched method used in this new approach to topology optimization has the same level of accuracy in the analysis as the standard finite element method with matching meshes, but without the need for remeshing. We derive the analytical sensitivities and we discuss the behavior of the optimization process in detail. We establish that IGFEM-based level set topology optimization generates correct topologies for well-known compliance minimization problems.


2018 ◽  
Vol 10 (10) ◽  
pp. 1544 ◽  
Author(s):  
Changjiang Liu ◽  
Irene Cheng ◽  
Anup Basu

We present a new method for real-time runway detection embedded in synthetic vision and an ROI (Region of Interest) based level set method. A virtual runway from synthetic vision provides a rough region of an infrared runway. A three-thresholding segmentation is proposed following Otsu’s binarization method to extract a runway subset from this region, which is used to construct an initial level set function. The virtual runway also gives a reference area of the actual runway in an infrared image, which helps us design a stopping criterion for the level set method. In order to meet the needs of real-time processing, the ROI based level set evolution framework is implemented in this paper. Experimental results show that the proposed algorithm is efficient and accurate.


Sign in / Sign up

Export Citation Format

Share Document