scholarly journals Evaluation of the Potential of Agro-Industrial Waste-Based Composts to Control Botrytis Gray Mold and Soilborne Fungal Diseases in Lettuce

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2231
Author(s):  
Cátia Santos ◽  
Joana Monte ◽  
Natália Vilaça ◽  
João Fonseca ◽  
Henrique Trindade ◽  
...  

Composts are widely used in horticulture as organic amendments to improve the properties of soils. Composts have also been reported to enhance the disease suppressive potential of soils and, therefore, could be used as a strategy for managing plant diseases. The aim of this study was to test the ability of soils amended with four different agro-industrial waste-based composts (chestnut peels and shells, spent coffee grounds, grape marc, and olive leaves) to inhibit the growth and activity of Botrytis cinerea and several soilborne pathogens. First, the capacity of aqueous compost extracts to inhibit the growth of Botrytis cinerea and five soilborne fungi was evaluated in vitro using a broth macrodilution method. Second, lettuce plants were grown on soils amended with composts and inoculated either with B. cinerea or the soilborne fungus Fusarium oxysporum Schlechtendahl isolated from lamb’s lettuce. The determination of minimal inhibitory concentrations indicated that none of the composts inhibited the mycelium growth of the selected fungal pathogens. However, the pathogens did not cause any damage on plants grown on the chestnut- and olive-based composts. Lettuce yields were also highest for plants grown with composts made from chestnut and olive, irrespective of the amount of compost incorporated into soils (5% or 10%, weight basis). The grape-based compost also exhibited a fertilization effect, although the effect was associated with increased Fusarium wilt severity. Both N immobilization and symbiosis with the compost’s microflora were used to explain the pathogenicity of F. oxysporum Schlechtendahl in response to amendment with composts made from grape and coffee wastes. The beneficial effects of the chestnut- and olive-based composts reported in this study could be exploited in strategies aimed at reducing reliance on synthetic pesticides for the control of fungi in lettuce cultivation.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9626
Author(s):  
Huiyu Hou ◽  
Xueying Zhang ◽  
Te Zhao ◽  
Lin Zhou

Background Botrytis cinerea causes serious gray mold disease in many plants. This pathogen has developed resistance to many fungicides. Thus, it has become necessary to look for new safe yet effective compounds against B. cinerea. Methods Essential oils (EOs) from 17 plant species were assayed against B. cinerea, of which Origanum vulgare essential oil (OVEO) showed strong antifungal activity, and accordingly its main components were detected by GC/MS. Further study was conducted on the effects of OVEO, carvacrol and thymol in vitro on mycelium growth and spore germination, mycelium morphology, leakages of cytoplasmic contents, mitochondrial injury and accumulation of reactive oxygen species (ROS) of B. cinerea. The control efficacies of OVEO, carvacrol and thymol on tomato gray mold were evaluated in vivo. Results Of all the 17 plant EOs tested, Cinnamomum cassia, Litsea cubeba var. formosana and O. vulgare EOs had the best inhibitory effect on B. cinerea, with 0.5 mg/mL completely inhibiting the mycelium growth of B. cinerea. Twenty-one different compounds of OVEO were identified by gas chromatography–mass spectrometry, and the main chemical components were carvacrol (89.98%), β-caryophyllene (3.34%), thymol (2.39%), α-humulene (1.38%) and 1-methyl-2-propan-2-ylbenzene isopropyl benzene (1.36%). In vitro experiment showed EC50 values of OVEO, carvacrol and thymol were 140.04, 9.09 and 21.32 μg/mL, respectively. Carvacrol and thymol completely inhibited the spore germination of B. cinerea at the concentration of 300 μg/mL while the inhibition rate of OVEO was 80.03%. EC50 of carvacrol and thymol have significantly (P < 0.05) reduced the fresh and dry weight of mycelia. The collapse and damage on B. cinerea mycelia treated with 40 μg/mL of carvacrol and thymol was examined by scanning electron microscope (SEM). Through extracellular conductivity test and fluorescence microscope observation, it was found that carvacrol and thymol led to increase the permeability of target cells, the destruction of mitochondrial membrane and ROS accumulation. In vivo conditions, 1000 μg/mL carvacrol had the best protective and therapeutic effects on tomato gray mold (77.98% and 28.04%, respectively), and the protective effect was significantly higher than that of 400 μg/mL pyrimethanil (43.15%). While the therapeutic and protective effects of 1,000 μg/mL OVEO and thymol were comparable to chemical control. Conclusions OVEO showed moderate antifungal activity, whereas its main components carvacrol and thymol have great application potential as natural fungicides or lead compounds for commercial fungicides in preventing and controlling plant diseases caused by B. cinerea.


Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1298-1304 ◽  
Author(s):  
Ting-ting Li ◽  
Jing-di Zhang ◽  
Jia-quan Tang ◽  
Zhi-cheng Liu ◽  
Ya-qian Li ◽  
...  

Tomato gray mold caused by Botrytis cinerea is one of the main diseases of tomato and significantly impacts the yield and quality of tomato fruit. The overuse of chemical fungicides has resulted in the development of fungicide-resistant strains. Biological control is becoming an alternative method for the control of plant diseases to replace or decrease the application of traditional synthetic chemical fungicides and genus Trichoderma is widely used as a biological agent for controlling tomato gray mold. Brassinolide (BR) is a plant-growth-promoting steroid. To enhance the efficiency and stability of Trichoderma activity against B. cinerea, an optimal combination of Trichoderma atroviride CCTCCSBW0199 and BR that controls B. cinerea infection in tomato was identified. Strain CCTCCSBW0199 was found to have antagonistic activity against B. cinerea both in vitro and in vivo. In addition, a fermented culture of chlamydospores and metabolites, or metabolites only of strain CCTCCSBW0199 also reduced growth of B. cinerea. BR reduced growth of B. cinerea and had no effect on the sporulation and growth of Trichoderma spp. An application of metabolites of a Trichoderma sp. + BR reduced gray mold on tomato leaves by approximately 70.0%. Furthermore, the activities of induced defense response-related enzyme, such as peroxidase, superoxide dismutase, catalase, and phenylalanine ammonia-lyase were increased in tomato plants treated with a Trichoderma sp. + BR. Our data suggested that applying a mix of metabolites of T. atroviride CCTCCSBW0199 + BR was effective at reducing gray mold of tomato and may lay a theoretical foundation for the development of novel biofungicides.


2018 ◽  
Vol 21 (7) ◽  
pp. 501-509 ◽  
Author(s):  
Miaofeng Ma ◽  
Jili Feng ◽  
Dezhi Wang ◽  
Shu-Wei Chen ◽  
Hui Xu

Aim and Objective: Plant diseases are caused by fungal pathogens lead to severe economic losses in many agriculture crops. And the increasing resistance of many fungi to commonly used antifungal agents necessitates the discovery and development of new fungicides. So this study was focused on synthesizing novel skeleton compounds to effectively control plant diseases. Materials and Methods: A series of drimane-amide derivatives were designed, synthesized by aminolysis reaction of amine with intermediate sclareolide which was prepared from sclareol. The structures of all the synthesized compounds were confirmed using 1H NMR, 13C NMR, and HRMS (ESI) spectroscopic data. Their in vitro antifungal activity were preliminarily evaluated by using the mycelium growth rate method against five phytopathogenic fungi: Botrytis cinerea, Glomerella cingulata, Alternaria alternate, Alternaria brassicae, and Fusarium graminearum. Results: 23 target compounds were successfully obtained in yields of 52-95%. Compounds A2 and A3 displayed favorable inhibitory potency against B. cinerea, G. cingulata and A. brassicae with IC50 values ranging from 3.18 to 10.48 µg/mL. These two compounds displayed higher fungicidal activity than sclareol against all the tested phytopathogenic fungi, and were more effective than the positive control thiabendazole against A. alternate and A. brassicae. The structure-activity relationship studies of compounds A1-10 indicated that both the position and type of substituent on the phenyl ring had significant effects on antifungal activity. Conclusion: The drimane-amide derivatives A2 and A3 were the most promising derivatives and should be selected as new templates for the potential antifungal agents.


2021 ◽  
Vol 7 (6) ◽  
pp. 428
Author(s):  
Men Thi Ngo ◽  
Minh Van Nguyen ◽  
Jae Woo Han ◽  
Myung Soo Park ◽  
Hun Kim ◽  
...  

In the search for antifungal agents from marine resources, we recently found that the culture filtrate of Trichoderma longibrachiatum SFC100166 effectively suppressed the development of tomato gray mold, rice blast, and tomato late blight. The culture filtrate was then successively extracted with ethyl acetate and n-butanol to identify the fungicidal metabolites. Consequently, a new compound, spirosorbicillinol D (1), and a new natural compound, 2′,3′-dihydro-epoxysorbicillinol (2), together with 11 known compounds (3–13), were obtained from the solvent extracts. The chemical structures were determined by spectroscopic analyses and comparison with literature values. The results of the in vitro antifungal assay showed that of the tested fungal pathogens, Phytophthora infestans was the fungus most sensitive to the isolated compounds, with MIC values ranging from 6.3 to 400 µg/mL, except for trichotetronine (9) and trichodimerol (10). When tomato plants were treated with the representative compounds (4, 6, 7, and 11), bisvertinolone (6) strongly reduced the development of tomato late blight disease compared to the untreated control. Taken together, our results revealed that the culture filtrate of T. longibrachiatum SFC100166 and its metabolites could be useful sources for the development of new natural agents to control late blight caused by P. infestans.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Armina Morkeliūnė ◽  
Neringa Rasiukevičiūtė ◽  
Lina Šernaitė ◽  
Alma Valiuškaitė

The Colletotrichum spp. is a significant strawberry pathogen causing yield losses of up to 50%. The most common method to control plant diseases is through the use of chemical fungicides. The findings of plants antimicrobial activities, low toxicity, and biodegradability of essential oils (EO), make them suitable for biological protection against fungal pathogens. The aim is to evaluate the inhibition of Colletotrichum acutatum by thyme, sage, and peppermint EO in vitro on detached strawberry leaves and determine EO chemical composition. Our results revealed that the dominant compound of thyme was thymol 41.35%, peppermint: menthone 44.56%, sage: α,β-thujone 34.45%, and camphor: 20.46%. Thyme EO inhibited C. acutatum completely above 200 μL L−1 concentration in vitro. Peppermint and sage EO reduced mycelial growth of C. acutatum. In addition, in vitro, results are promising for biological control. The detached strawberry leaves experiments showed that disease reduction 4 days after inoculation was 15.8% at 1000 μL L−1 of peppermint EO and 5.3% at 800 μL L−1 of thyme compared with control. Our findings could potentially help to manage C. acutatum; however, the detached strawberry leaves assay showed that EO efficacy was relatively low on tested concentrations and should be increased.


BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

Abstract Composts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, for in vitro antifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters in Arabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genus Bacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth of Arabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect on Arabidopsis and tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect on Arabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn't affect Arabidopsis growth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


FLORESTA ◽  
2013 ◽  
Vol 43 (2) ◽  
pp. 225
Author(s):  
Miriam Machado Cunico ◽  
Celso Garcia Auer ◽  
Marlon Wesley Machado Cunico ◽  
Obdulio Gomes Miguel ◽  
Patricio Peralta Zamora ◽  
...  

 Extratos etanólicos de anestesia, Ottonia martiana Miq., foram reavaliados quanto à inibição do crescimento micelial dos fungos Cylindrocladium spathulatum (pinta-preta da erva-mate) e Botrytis cinerea (mofo-cinzento do eucalipto), por meio do planejamento fatorial. A ocorrência de decomposição de bioativos no processo de autoclavagem também foi investigada, por meio de teste de eficiência de extratos filtrados (filtro Millipore) e esterilizados (autoclave) no controle dos fitopatógenos, nas concentrações de 1, 10, 100 e 1000 ppm. Os extratos etanólicos filtrado e esterilizado inibiram o crescimento micelial dos fungos e foram mais ativos frente a B. cinerea.O extrato filtrado exibiu maior potencial antifúngico que o extrato esterilizado. O processo de esterilização por autoclavagem causou pequena decomposição dos bioativos presentes no extrato de anestesia.Palavras-chave: Anestesia; mofo-cinzento; pinta-preta. Abstract Fungitoxic potential of ethanolic extracts of anestesia in the control of phytopathogenic diseases. The antifungal potential of anestesia, Ottonia martiana Miq. was reassessed by factorial design, in vitro testing of fungal mycelial growth compared to the pathogenic isolates Cylindrocladium spathulatum, causal agent of black spot onyerba mate, and Botrytis cinerea causal agent of gray-mold on eucalypts. Occurrence of decomposition of bioactive of the autoclaving process was investigated using foliar detached test compared to the pathogens (1000 ppm). Ethanolic extracts - EBEtOH (filtered and autoclaved) inhibited the mycelial growth of C. spathulatum and B. cinerea (1000 ppm) and were more pronounced against B. cinerea (43.6 % and 68.9 %). EBEtOH filtered (0.22 µm) presented higher activity than EBEtOH autoclaved (C. spathulatum: 52.8 % and 43.6 %, B. cinerea: 68.9 % and 43.6 %), suggesting little decomposition ofbioactive after autoclaving. EBEtOH filtrate presented potential inhibition of 28 % in eucalypt leaves against B. cinerea.  Keywords: Ottonia martiana; black spot; gray-mold.


2018 ◽  
Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A. Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

AbstractComposts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, forin vitroantifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters inArabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genusBacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth ofArabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect onArabidopsisand tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect onArabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn’t affectArabidopsisgrowth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.


Sign in / Sign up

Export Citation Format

Share Document