scholarly journals Ferrocenes as Potential Anticancer Drugs: Determination of the Mechanism of Action

Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 16
Author(s):  
Hrstka ◽  
Skoupilová ◽  
Bartošík ◽  
Sommerová ◽  
Karban ◽  
...  

Chemotherapy is an essential treatment that still plays a vital role in cancer treatment worldwide. The ferrocene derivatives of the general formula [Fe{(η5‑C5H4CH2(p‑C6H4)CH2(N‑het)}2] bearing modified six and five membered N-heterocycles were tested in vitro for their cytotoxic properties against ovarian cancer cell lines A2780 and SK-OV-3. These ferrocene complexes displayed cytotoxicity in low micromolar concentrations against both cell lines. To study cellular uptake of particular ferrocenes into tumor cells, we used differential pulse voltammetry and ICP-MS. We confirmed the crucial role of transferrin receptors in the process of intracellular accumulation of these ferrocenes. Interestingly, the rate of intracellular accumulation of particular ferrocenes clearly mirrored the cytotoxicity of these organometallic compounds. Deeper investigation of the mechanism by which ferrocenes kill tumor cells revealed induction of apoptosis associated with significant increase of reactive oxygen species. In conclusion, our screening identified several ferrocene derivatives exerting promising cytostatic activity in vitro. Further investigation led to the identification of the mechanism of action of these potential anticancer agents, which represents an important milestone in preclinical anticancer drug discovery programs. This work was supported by the project MEYS-NPS I-LO1413, MH CZ-DRO (MMCI, 00209805) and Czech Science Foundation project 17-05838S.

Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 192 ◽  
Author(s):  
Guangsheng Cai ◽  
Simiao Wang ◽  
Lang Zhao ◽  
Yating Sun ◽  
Dongsheng Yang ◽  
...  

A series of thiophene derivatives (TPs) were synthesized and evaluated for cytotoxicity in HepG2 and SMMC-7721 cell lines by MTT assay. TP 5 was identified as a potential anticancer agent based on its ability to inhibit tumor cell growth. Drawbacks of TPs, including poor solubility and high toxicity, were overcome through delivery using self-assembling HSA nanoparticles (NPs). The optimum conditions for TP 5-NPs synthesis obtained by adjusting the temperature and concentration of TP 5. The NPs had an encapsulation efficiency of 99.59% and drug-loading capacity of 3.70%. TP 5 was slowly released from TP 5-NPs in vitro over 120 h. HepG2 and SMMC-7721 cell lines were employed to study cytotoxicity of TP 5-NPs, which exhibited high potency. ROS levels were elevated and mitochondrial membrane potentials reversed when the two cell lines were treated with TP 5-NPs for 12 h. Cellular uptake of fluorescence-labeled TP 5-NPs in vitro was analyzed by flow cytometry and laser confocal scanning microscopy. Fluorescence intensity increased over time, suggesting that TP 5-NPs were efficiently taken up by tumor cells. In conclusion, TP 5-NPs showed great promise as an anticancer therapeutic agent.


2020 ◽  
Vol 19 (16) ◽  
pp. 2010-2018
Author(s):  
Youstina W. Rizzk ◽  
Ibrahim M. El-Deen ◽  
Faten Z. Mohammed ◽  
Moustafa S. Abdelhamid ◽  
Amgad I.M. Khedr

Background: Hybrid molecules furnished by merging two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the keen attention of researchers to discover their therapeutic capability against cancer. Objective: The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines. Materials and Methods: A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT- 116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T. Results: All the synthesized compounds were assessed for their in vitro antiproliferative activity against four cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds 4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1 phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a correlated to its topoisomerase II inhibitory activity. Conclusion: Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further optimization to obtain promising anticancer agents.


2018 ◽  
Vol 18 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Shabnam Farzaneh ◽  
Elnaz Zeinalzadeh ◽  
Bahram Daraei ◽  
Soraya Shahhosseini ◽  
Afshin Zarghi

Background: Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Objective: Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Methods: Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. Results: In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity activities of synthesized compounds against breast cancer cell lines MCF-7 and T47D and fibroblast cell lines showed that the synthesized compounds had mild to moderate cytotoxicity against MCT7 and T47D breast cancer cell lines at 10 µM concentration. In vitro COX-1/COX-2 inhibition studies and anticancer activity against MCF-7, identified 1-ferrocenyl-3-(4-methylsulfonylphenyl) propen-1-one as a potent compound (IC50 COX-2 = 0.05 µM, MCF-7: % inhibition (at concentration of 10 µM) = 32.7%), and also 1-ferrocenyl-3- (propan-1-amine)-3-(4-methylsulfonylphenyl) propan-1-one showed the most selectivity on COX-2 inhibition (selectivity index= 313.7). Conclusion: A novel group of ferrocene compounds, possessing a methyl sulfonyl COX-2 pharmacophore were synthesized to investigate the effect of different substituents on selectivity and potency of COX-2 inhibitory activity and their cytotoxicity effects. This study indicates that 1-ferrocenyl-3-amino carbonyl compounds having ferrocene motif and methyl sulfonyl COX-2 pharmacophore is a suitable scaffold to design COX-2 inhibitors and anti-cancer agents.


Author(s):  
Zeinab Abedian ◽  
Niloofar Jenabian ◽  
Ali Akbar Moghadamnia ◽  
Ebrahim Zabihi ◽  
Roghayeh Pourbagher ◽  
...  

Objective/ Background: Cancer is still the most common cause of morbidity in world and new powerful anticancer agents without severe side effects from natural sources is important. Methods: The evaluation of cytotoxicity and apoptosis induction was carried out in MCF-7,HeLa and Saos-2 as cancerous cell lines with different histological origin and human fibroblast served as control normal cell. The cells were treated with different concentrations of chitosan and the cytotoxicity was determined using MTT assay after 24, 48 and 72 h .The mode of death was evaluated by flow cytometry . Results: While both types of chitosan showed significant concentration-dependently cytotoxic effects against the three cancerous cell lines, fibroblast cells showed somehow more compatibility with chitosan. On the other hand, there were no significant differences between LMWC and HMWC cytotoxicity in all cell lines. The flow cytometry results showed the apoptosis pattern of death more in Saos-2 and HeLa while necrosis was more observable with MCF7. Also higher viability with both types of chitosan was seen in fibroblast as normal cells Conclusion: Chitosan shows anticancerous effect against 3 cancerous cell lines, while it is compatible with normal diploid fibroblast cells. Furthermore, it seems that the molecular weight of chitosan does not affect its anticancerous property.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Vincenza Barresi ◽  
Carmela Bonaccorso ◽  
Domenico A. Cristaldi ◽  
Maria N. Modica ◽  
Nicolò Musso ◽  
...  

Recent drug discovery efforts are highly focused towards identification, design, and synthesis of small molecules as anticancer agents. With this aim, we recently designed and synthesized novel compounds with high efficacy and specificity for the treatment of breast tumors. Based on the obtained results, we constructed a Volsurf+ (VS+) model using a dataset of 59 compounds able to predict the in vitro antitumor activity against MCF-7 cancer cell line for new derivatives. In the present paper, in order to further verify the robustness of this model, we report the results of the projection of more than 150 known molecules and 9 newly synthesized compounds. We predict their activity versus MCF-7 cell line and experimentally verify the in silico results for some promising chosen molecules in two human breast cell lines, MCF-7 and MDA-MB-231.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. TPS4168-TPS4168
Author(s):  
Laith I. Abushahin ◽  
Anne M. Noonan ◽  
John L. Hays ◽  
Pannaga G. Malalur ◽  
Ashish Manne ◽  
...  

TPS4168 Background: Metastatic pancreatic adenocarcinoma has a poor prognosis, and improvements in therapy have been challenging. Alongside efforts in developing novel agents, there is a need to optimize and maximize the benefit of currently approved drugs. Gemcitabine + nab-paclitaxel is a frequently used regimen for pancreatic adenocarcinoma. Nab-paclitaxel is albumin–bound chemotherapy; hence the role of albumin uptake is critical for its effect. Caveolae are small membrane invaginations essential for transendothelial albumin uptake. Cav-1 is the principal structural component of caveolae. Williams and colleagues have published a series of preclinical studies demonstrating that tumor cell-specific Cav-1 expression directly correlates with albumin and albumin-bound chemotherapy uptake and subsequent apoptotic response in tumor cells. In vitro studies showed that exposure of pancreatic cancer cells to Gemcitabine resulted in up-regulation of Cav-1 peaking 48 hours after gemcitabine exposure. This Cav-1 up-regulation correlated with increased temporal albumin cellular uptake. In addition, Williams and colleagues noted that exposure of pancreatic cancer cell lines to Gemcitabine resulted in a time–specific re-entry of cells into the G2/M phase (nab-paclitaxel cytotoxicity phase) between 48-60 hours after gemcitabine treatment. Collectively this data suggest that infusing nab-paclitaxel after 48 hours of gemcitabine infusion would be optimal for both increased uptake as well as increased susceptible tumor cells. We had previously shown this effect on multiple cell lines as well as mouse models. Methods: This is a phase II trial; patients will receive a standard of care chemotherapy regimen consisting of FDA-approved Gemcitabine + nab-paclitaxel with modification of the schedule to deliver nab-paclitaxel 48 hours (2 days) after gemcitabine infusions. The primary endpoint is ORR, with a null hypothesis of 20% vs. a target of 35%. Employing a 2-stage design (minimax) and assuming 80% power and a 0.05 significance level, a total of 53 patients will be required. In the first stage, if at least 7/31 patients respond to therapy, an additional 22 patients will be added for a total of 53 patients. The study will be terminated early if ≤ six patients respond in the first stage. Observation of response in at least 16/53 patients would be required to warrant further investigation of this infusion schedule of combination therapy. The secondary endpoints include the safety of the regimen schedule, Relative dose intensity, disease control rate, PFS, and OS. The trial opened to enrollment in June 2020 and is accepting patients. Clinical trial information: NCT04115163.


Cells ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 216 ◽  
Author(s):  
Urszula Majcher ◽  
Greta Klejborowska ◽  
Magdalena Kaik ◽  
Ewa Maj ◽  
Joanna Wietrzyk ◽  
...  

Specific modifications of colchicine followed by synthesis of its analogues have been tested in vitro with the objective of lowering colchicine toxicity. Our previous studies have clearly shown the anticancer potential of double-modified colchicine derivatives in C-7 and C-10 positions. Here, a series of novel triple-modified colchicine derivatives is reported. They have been obtained following a four-step strategy. In vitro cytotoxicity of these compounds has been evaluated against four human tumor cell lines (A549, MCF-7, LoVo, and LoVo/DX). Additionally, the mode of binding of the synthesized compounds was evaluated in silico using molecular docking to a 3D structure of β-tubulin based on crystallographic data from the Protein Data Bank and homology methodology. Binding free energy estimates, binding poses, and MlogP values of the compounds were obtained. All triple-modified colchicine derivatives were shown to be active at nanomolar concentrations against three of the investigated cancer cell lines (A549, MCF-7, LoVo). Four of them also showed higher potency against tumor cells over normal cells as confirmed by their high selectivity index values. A vast majority of the synthesized derivatives exhibited several times higher cytotoxicity than colchicine, doxorubicin, and cisplatin.


2021 ◽  
Vol 3 (Supplement_3) ◽  
pp. iii3-iii3
Author(s):  
Jiwei Wang ◽  
Emma Rigg ◽  
Taral R Lunavat ◽  
Wenjing Zhou ◽  
Zichao Feng ◽  
...  

Abstract Background Melanoma has the highest propensity of any cancer to metastasize to the brain, with late-stage patients developing brain metastasis (MBM) in 40% of cases. Survival of patients with MBM is around 8 months with current therapies, illustrating the need for new treatments. MBM development is likely caused by molecular interactions between tumor cells and the brain, constituting the brain metastatic niche. miRNAs delivered by exosomes released by the primary tumor cells may play a role in niche establishment, yet the mechanisms are poorly understood. Here, the aim was to identify miRNAs released by exosomes from melanomas, which may be important in niche establishment and MBM progression. Materials and Methods miRNAs from exosomes collected from human astrocytes, melanocytes, and MBM cell lines were profiled to determine differential expression. Functional in vitro validation was performed by cell growth and migration assays, cytokine arrays, qPCR and Western blots. Functional in vivo studies were performed after miR knockdown in MBM cell lines. An in silico docking study was performed to determine drugs that potentially inhibit transcription of miR-146a to impede MBM development. Results miR-146a was the most upregulated miRNA in exosomes from MBM cells and was highly expressed in human and animal MBM samples. miR-146a mimics activated human astrocytes, shown by increased proliferation and migration, elevated expression of GFAP in vitro and in mouse brain tumor samples, and increased cytokine production. In animal studies, knockdown of miR-146a in MBM cells injected intracardially into mice reduced BM burden and increased animal survival. Based on the docking studies, deserpidine was found to be an effective inhibitor of MBM growth in vitro and in vivo. Conclusions MiR-146a may play an important role in MBM development, and deserpidine is a promising candidate for clinical use.


2021 ◽  
Vol 33 ◽  
pp. 03001
Author(s):  
Annise Proboningrat ◽  
Amaq Fadholly ◽  
Sri Agus Sudjarwo ◽  
Fedik Abdul Rantam ◽  
Agung Budianto Achmad

Several efforts have been made to discover new anticancer agents based on natural ingredients. Meanwhile, previous studies have shown that different Pine genus species exhibit cytotoxic activity against various types of cancer cells. This plant is rich in phenolic compounds, especially procyanidins, flavonoids, and phenolic acids. Therefore, this study aims to investigate the in vitro cytotoxicity of Pinus merkusii needles extract on HeLa cancer cell lines. The cytotoxicity assessment was measured using MTT assay and expressed as IC50 value. The results showed that the ethanolic extract poses a dose and time-dependent cytotoxic activity with an IC50 value of 542.5 µg/ml at 48 hours of incubation. Based on this result, Pinus merkusii needles’ ethanolic extract has the potential of a novel candidate for an anticancer agent.


1974 ◽  
Vol 53 (3) ◽  
pp. 661-674 ◽  
Author(s):  
R. Cailleau ◽  
R. Young ◽  
M. Olivé ◽  
W. J. Reeves

Summary During 1973, 4 new epithelial tumor cell lines were isolated from pleural effusions from breast cancer patients. We describe 3 of these lines: MDA-MB-134, with a mean chromosome number of 43; MDA-MB-175, with a mean chromosome number of 49; and MDA-MB-231, with a mean chromosome number between 65 and 69. We isolated the same cell type from 4 of 10 effusions from MDA-MB-134 and from 6 of 8 effusions from MDA-MB-175. We found that pleural effusions as a source of breast tumor cells to be cultured and studied in vitro have the following advantages: 1) large amounts of material and the possibility of obtaining sequential samples from the same patient; 2) high viability of tumor cells; 3) scarcity or absence of fibroblasts; and 4) the possibility of separating the tumor cells from other “contaminating” cell types by differences in their speed or degree of attachment to the flask. All lines from different patients differed, as seen grossly and microscopically. All lines from sequential pleural effusions from the same patient were apparently alike. No viruses or mycoplasmas were detected in any line.


Sign in / Sign up

Export Citation Format

Share Document