scholarly journals Increasing Heat Tolerance in Wheat to Counteract Recent and Projected Increases in Heat Stress

Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 132
Author(s):  
Najeeb Ullah ◽  
Behnam Ababaei ◽  
Karine Chenu

The frequency of heat shocks during grain filling of wheat crops across the Australian wheatbelt has significantly increased over the last 30 years. These post-flowering heat events significantly reduce wheat yields with a relatively greater impact on grain size than grain number. A controlled environment study was conducted to assess the impact of post-flowering heat shocks on wheat recombinant inbred lines SB062 and SB003. Plants were submitted to 7-day heat shocks (33/21 °C day/night temperature) at different periods during grain filling. Heat shocks significantly accelerated leaf senescence, with a greater impact on older leaves and for mid post-flowering stresses. Overall, the tolerant line (SB062) could maintain leaf greenness longer than the sensitive line (SB003), especially when submitted to heat stress. Further, heat shocks during early-to-mid grain filling reduced the grain size and weight. While the impact on developing grains was significant in SB003, no significant effect of post-flowering heat was observed on leaf senescence nor on grain size in the tolerant line SB062. Delayed leaf senescence appeared to play a role in maintaining grain size under heat stress. The research findings will assist improving crop models for post-flowering heat effects and developing techniques for screening heat tolerant wheat lines. Increased post-flowering assimilate production through sustained leaf greenness could improve the performance of wheat crops in increasingly warmer environments.

2017 ◽  
Vol 68 (11) ◽  
pp. 985 ◽  
Author(s):  
Muhammad Farooq ◽  
Faisal Nadeem ◽  
Nirmali Gogoi ◽  
Aman Ullah ◽  
Salem S. Alghamdi ◽  
...  

Thermal stress during reproductive development and grain-filling phases is a serious threat to the quality and productivity of grain legumes. The optimum temperature range for grain legume crops is 10−36°C, above which severe losses in grain yield can occur. Various climatic models have simulated that the temperature near the earth’s surface will increase (by up to 4°C) by the end of this century, which will intensify the chances of heat stress in crop plants. The magnitude of damage or injury posed by a high-temperature stress mainly depends on the defence response of the crop and the specific growth stage of the crop at the time of exposure to the high temperature. Heat stress affects grain development in grain legumes because it disintegrates the tapetum layer, which reduces nutrient supply to microspores leading to premature anther dehiscence; hampers the synthesis and distribution of carbohydrates to grain, curtailing the grain-filling duration leading to low grain weight; induces poor pod development and fractured embryos; all of which ultimately reduce grain yield. The most prominent effects of heat stress include a substantial reduction in net photosynthetic rate, disintegration of photosynthetic apparatus and increased leaf senescence. To curb the catastrophic effect of heat stress, it is important to improve heat tolerance in grain legumes through improved breeding and genetic engineering tools and crop management strategies. In this review, we discuss the impact of heat stress on leaf senescence, photosynthetic machinery, assimilate translocation, water relations, grain quality and development processes. Furthermore, innovative breeding, genetic, molecular and management strategies are discussed to improve the tolerance against heat stress in grain legumes.


2021 ◽  
Vol 19 (1) ◽  
pp. 74-89
Author(s):  
Amandeep Kaur ◽  
Parveen Chhuneja ◽  
Puja Srivastava ◽  
Kuldeep Singh ◽  
Satinder Kaur

AbstractAddressing the impact of heat stress during flowering and grain filling is critical to sustaining wheat productivity to meet a steadily increasing demand from a rapidly growing world population. Crop wild progenitor species of wheat possess a wealth of genetic diversity for several biotic and abiotic stresses, and morphological traits and can serve as valuable donors. The transfer of useful variation from the diploid progenitor, Aegilops tauschii, to hexaploid wheat can be done through the generation of synthetic hexaploid wheat (SHW). The present study targeted the identification of potential primary SHWs to introduce new genetic variability for heat stress tolerance. Selected SHWs were screened for different yield-associated traits along with three advanced breeding lines and durum parents as checks for assessing terminal heat stress tolerance under timely and late sown conditions for two consecutive seasons. Heat tolerance index based on the number of productive tillers and thousand grain weight indicated that three synthetics, syn9809 (64.32, 78.80), syn14128 (50.30, 78.28) and syn14135 (58.16, 76.03), were able to endure terminal heat stress better than other SHWs as well as checks. One of these synthetics, syn14128, recorded a minimum reduction in thousand kernel weight (21%), chlorophyll content (2.56%), grain width (1.07%) despite minimum grain-filling duration (36.15 d) and has been selected as a potential candidate for introducing the terminal heat stress tolerance in wheat breeding programmes. Breeding efforts using these candidate donors will help develop lines with a higher potential to express the desired heat stress-tolerant phenotype under field conditions.


2016 ◽  
Vol 43 (10) ◽  
pp. 919 ◽  
Author(s):  
Hamid Shirdelmoghanloo ◽  
Daniel Cozzolino ◽  
Iman Lohraseb ◽  
Nicholas C. Collins

Short heat waves during grain filling can reduce grain size and consequently yield in wheat (Triticum aestivum L.). Grain weight responses to heat represent the net outcome of reduced photosynthesis, increased mobilisation of stem reserves (water-soluble carbohydrates, WSC) and accelerated senescence in the grain. To compare their relative roles in grain weight responses under heat, these characteristics were monitored in nine wheat genotypes subjected to a brief heat stress at early grain filling (37°C maximum for 3 days at 10 days after anthesis). Compared with the five tolerant varieties, the four susceptible varieties showed greater heat-triggered reductions in final grain weight, grain filling duration, flag leaf chla and chlb content, stem WSC and PSII functionality (Fv/Fm). Despite the potential for reductions in sugar supply to the developing grains, there was little effect of heat on grain filling rate, suggesting that grain size effects of heat may have instead been driven by premature senescence in the grain. Extreme senescence responses potentially masked stem WSC contributions to grain weight stability. Based on these findings, limiting heat-triggered senescence in the grain may provide an appropriate focus for improving heat tolerance in wheat.


Author(s):  
Josh Foster ◽  
James W. Smallcombe ◽  
Simon Hodder ◽  
Ollie Jay ◽  
Andreas D. Flouris ◽  
...  

AbstractHeat stress decreases human physical work capacity (PWC), but the extent to which solar radiation (SOLAR) compounds this response is not well understood. This study empirically quantified how SOLAR impacts PWC in the heat, considering wide, but controlled, variations in air temperature, humidity, and clothing coverage. We also provide correction equations so PWC can be quantified outdoors using heat stress indices that do not ordinarily account for SOLAR (including the Heat Stress Index, Humidex, and Wet-Bulb Temperature). Fourteen young adult males (7 donning a work coverall, 7 with shorts and trainers) walked for 1 h at a fixed heart rate of 130 beats∙min−1, in seven combinations of air temperature (25 to 45°C) and relative humidity (20 or 80%), with and without SOLAR (800 W/m2 from solar lamps). Cumulative energy expenditure in the heat, relative to the work achieved in a cool reference condition, was used to determine PWC%. Skin temperature was the primary determinant of PWC in the heat. In dry climates with exposed skin (0.3 Clo), SOLAR caused PWC to decrease exponentially with rising air temperature, whereas work coveralls (0.9 Clo) negated this effect. In humid conditions, the SOLAR-induced reduction in PWC was consistent and linear across all levels of air temperature and clothing conditions. Wet-Bulb Globe Temperature and the Universal Thermal Climate Index represented SOLAR correctly and did not require a correction factor. For the Heat Stress Index, Humidex, and Wet-Bulb Temperature, correction factors are provided enabling forecasting of heat effects on work productivity.


Crop Science ◽  
2019 ◽  
Vol 59 (2) ◽  
pp. 684-696 ◽  
Author(s):  
Raju Bheemanahalli ◽  
V. S. John Sunoj ◽  
Gautam Saripalli ◽  
P. V. Vara Prasad ◽  
H. S. Balyan ◽  
...  

2019 ◽  
Author(s):  
Chao Wu ◽  
She Tang ◽  
Ganghua Li ◽  
Shaohua Wang ◽  
Shah Fahad ◽  
...  

Rice is highly susceptible to heat stress at the reproductive stage. In this review, we first summarize recent progress in heat effects on rice grain yield during different reproductive stages. Different responses of yield traits of rice to heat stress during different reproductive stages are identified. The number of spikelets per panicle is reduced by heat stress during the early reproductive stage but is not affected by heat stress during the mid-late reproductive stage. Spikelet sterility induced by heat stress can be attributed primarily to physiological abnormalities in the reproductive organs during flowering but attributed to structural and morphological abnormalities in reproductive organs during panicle initiation. The lower grain weight caused by heat stress during the early reproductive stage was due to a reduction in non-structural carbohydrates, undeveloped vascular bundles, and a reduction in grain length and width, while a shortened grain filling duration, reduced grain filling rate, and decreased grain width affect grain weight when heat stress occurs during grain filling. Phytohormones play vital roles in regulating plant adaptations against heat stress. We discuss the processes involving phytohormone homeostasis (biosynthesis, catabolism, deactivation, and transport) in response to heat stress. It is currently thought that biosynthesis and transport may be the key processes that determine phytohormone levels and final grain yield in rice under heat stress conditions. Finally, we prospect that screening and breeding rice varieties with comprehensive tolerance to heat stress throughout the entire reproductive phase could be feasible to cope with unpredictable heat events in the future. Studies in phytohormone homeostatic response are needed to further reveal the key processes that determine phytohormone levels under heat condition.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 276
Author(s):  
Nadia Chibane ◽  
Marlon Caicedo ◽  
Susana Martinez ◽  
Purificación Marcet ◽  
Pedro Revilla ◽  
...  

Stay-green (SG) is a term used to describe genotypes that have delayed leaf senescence as compared to reference genotypes. SG could be favorable for grain yield, silage yield and quality, double exploitation (grain for feed and stover for bioenergy), stress resistance, etc. However, some studies show contradictory results regarding the influence of senescence or SG in the uptake and remobilization of nutrients and the yield and moisture of stover and grain. This experiment is aimed to study the impact of senescence in grain and stover yield and moisture in inbred lines of maize and assess the potential of SG genotypes for double exploitation. We also study the influence of senescence in the uptake of N and remobilization of dry matter and N from stover to grain. We evaluated 16 maize inbred lines with contrasting expression of senescence in the field at two locations in Galicia in 2017. We confirmed that SG is functional, meaning that the SG genotypes maintained photosynthesis activity for a lengthy period. Coordinated with a delayed senescence, the grain filling of the SG genotypes was 9 days longer than NSG genotypes. SG genotypes took up more N after flowering, although the remobilization of N and, in general, of dry matter from stover to kernels was less efficient. However, the higher uptake compensated the poor remobilization, and the final effect of SG on the N content of the kernels was favorable. SG was also favorable for kernel weight and the kernels of SG genotypes were 20% heavier than for NSG. The stover yield was also higher in the SG genotypes, indicating a potential of SG for breeding for double purpose (grain for feed and stover for bioenergy).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jose M. Barrero ◽  
Luciana Porfirio ◽  
Trijntje Hughes ◽  
Jing Chen ◽  
Shannon Dillon ◽  
...  

Abstract In the Australian wheat belts, short episodes of high temperatures or hot spells during grain filling are becoming increasingly common and have an enormous impact on yield and quality, bringing multi-billion losses annually. This problem will become recurrent under the climate change scenario that forecast increasing extreme temperatures, but so far, no systematic analysis of the resistance to hot spells has yet been performed in a diverse genetic background. We developed a protocol to study the effects of heat on three important traits: grain size, grain dormancy and the presence of Late Maturity α-Amylase (LMA), and we validated it by analysing the phenotypes of 28 genetically diverse wheat landraces and exploring the potential variability existing in the responses to hot spells. Using controlled growth environments, the different genotypes were grown in our standard conditions until 20 days after anthesis, and then moved for 10 days into a heat chamber. Our study showed that our elevated temperature treatment during mid-late filling triggered multiple detrimental effects on yield and quality. We observed a reduction in grain size, a reduction in grain dormancy and increased LMA expression in most of the tested genotypes, but potential resistant lines were identified for each analyzed trait opening new perspectives for future genetic studies and breeding for heat-insensitive commercial lines.


2018 ◽  
Vol 55 (5) ◽  
pp. 818-827 ◽  
Author(s):  
PARIMALAN RANGAN ◽  
AGNELO FURTADO ◽  
ROBERT HENRY

SUMMARYClimatic change affects global agriculture and is a severe threat to global food security due to variability of the three factors measuring climate change (CO2, temperature and precipitation) with temperature being the most crucial one. Wheat is severely affected by high temperatures with reproductive and grain-filling phases being most sensitive, impacting grain number, size and weight. Seed size and weight are the key agronomic traits subjected to artificial selection and involved in the domestication process since the origin of agriculture. Three genotypes Banks, EGA Gregory and Fang-60 with the latter known to be heat tolerant were grown under glass house conditions and subjected to heat stress for 3 days during early- (11–14 dpa – days post anthesis) and late- (27–30 dpa) grain filling stages in a mutually exclusive fashion. The impact of heat stress during early- and late- grain filling on the four major grain characteristics, thousand grain weight (TGW), grain length, grain width and grain thickness was assessed. The tolerant genotype Fang-60 exhibited significantly higher TGW during early-grain filling heat stress than the control possibly due to an ability to exploit the accelerated release of fertilizer under high temperature. Banks and EGA Gregory were moderately tolerant to susceptible to heat stress, respectively, at early- and late-grain filling with Fang-60 being tolerant to both early- and late- grain filling heat stress. This study confirms the availability of significant genetic variation in heat stress response in wheat that might be exploited to adapt wheat to higher growth temperatures.


2019 ◽  
Author(s):  
Chao Wu ◽  
She Tang ◽  
Ganghua Li ◽  
Shaohua Wang ◽  
Shah Fahad ◽  
...  

Rice is highly susceptible to heat stress at the reproductive stage. In this review, we first summarize recent progress in heat effects on rice grain yield during different reproductive stages. Different responses of yield traits of rice to heat stress during different reproductive stages are identified. The number of spikelets per panicle is reduced by heat stress during the early reproductive stage but is not affected by heat stress during the mid-late reproductive stage. Spikelet sterility induced by heat stress can be attributed primarily to physiological abnormalities in the reproductive organs during flowering but attributed to structural and morphological abnormalities in reproductive organs during panicle initiation. The lower grain weight caused by heat stress during the early reproductive stage was due to a reduction in non-structural carbohydrates, undeveloped vascular bundles, and a reduction in grain length and width, while a shortened grain filling duration, reduced grain filling rate, and decreased grain width affect grain weight when heat stress occurs during grain filling. Phytohormones play vital roles in regulating plant adaptations against heat stress. We discuss the processes involving phytohormone homeostasis (biosynthesis, catabolism, deactivation, and transport) in response to heat stress. It is currently thought that biosynthesis and transport may be the key processes that determine phytohormone levels and final grain yield in rice under heat stress conditions. Finally, we prospect that screening and breeding rice varieties with comprehensive tolerance to heat stress throughout the entire reproductive phase could be feasible to cope with unpredictable heat events in the future. Studies in phytohormone homeostatic response are needed to further reveal the key processes that determine phytohormone levels under heat condition.


Sign in / Sign up

Export Citation Format

Share Document