scholarly journals Effect of the Incorporation of Biomass in the Carbonization of Waste Electrical and Electronic Equipment

Proceedings ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 4
Author(s):  
Roberta Mota-Panizio ◽  
Luis F. Carmo-Calado ◽  
Octávio Alves ◽  
Catarina Nobre ◽  
J. L. Silveira ◽  
...  

The behavior of chars from the carbonization process were studied when the lignocellulosic biomass was incorporated into the waste of electrical and electronic equipment for chlorine removal. Tests were performed at 300°C with a heating rate of 15°C/min and residence time of 60 min. Compositions studied had 100, 75, 50, 25 and 0% of waste electrical and electronic equipment (WEEE) in the mixtures. The composition of 50% WEEE with 50% lignocellulosic biomass presented the best char properties, having an increment of the calorific value in 5.5% relative to the initial value, and chlorine removal of 23.4% when compared to the forestry biomass.

2021 ◽  
Author(s):  
Syazmi Zul Arif Hakimi Saadon ◽  
Noridah Osman ◽  
Moviin Damodaran ◽  
Shan En Liew

Abstract Interest in torrefaction has improved along the recent years and it has been studied extensively as a mean of preparing solid fuels. Biomass to be considered as a renewable source of energy must endeavor improvement continuously and where it is more sustainable going forward in which can come from waste product, wild and cultivated plant. The aim of this study is to investigate the effect of temperature and residence time of wild Napier grass and Oil palm petiole from waste. The torrefied samples were derived by pyrolysis reactor mimicking torrefaction procedure. The temperature parameter ranges between 220 and 300 ℃ while residence time parameter is from 10 minutes to 50 minutes of reaction. It was found that as temperature and time increasing, moisture content and amount of O and H atoms decreases as well as both mass and energy yield, but calorific value and the energy density increase along with both two parameters. Between the two parameters, the temperature variation shows more significant changes to the torrefied samples as compared time. The optimized temperature and time are found to be 260 ℃ and 30 minutes, respectively. Remarkably, the usage of pyrolyzer as torrefaction reaction has proved to be a good option since they share similar characteristics while can also produce product with similar properties reflecting torrefaction process.


2010 ◽  
Vol 10 (24) ◽  
pp. 3250-3256 ◽  
Author(s):  
Y. Uemura ◽  
W. Omar ◽  
T. Tsutsui ◽  
D. Subbarao ◽  
S. Yusup

Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 444 ◽  
Author(s):  
Samuel Carrasco ◽  
Javier Silva ◽  
Ernesto Pino-Cortés ◽  
Jaime Gómez ◽  
Fidel Vallejo ◽  
...  

The effect of magnesium chloride as an additive of hydrothermal carbonization (HTC) of lignocellulosic biomass (Pinus radiata sawdust) was studied. The HTC tests were carried out at fixed conditions of temperature and residence time of 220 °C and 1 h, respectively, and varying the dose of magnesium chloride in the range 0.0–1.0 g MgCl2/g biomass. The carbonized product (hydrochar) was tested in order to determine its calorific value (HHV) while using PARR 6100 calorimeter, mass yield by gravimetry, elemental analysis using a LECO TruSpec elemental analyzer, volatile matter content, and ash content were obtained by standardized procedures using suitable ovens for it. The results show that using a dose of 0.75 g MgCl2/g biomass results in an impact on the mass yield that was almost equal to change operating conditions from 220 to 270 °C and from 0.5 to 1 h, without additive. Likewise, the calorific value increases by 33% for this additive dose, resulting in an energy yield of 68%, thus generating a solid fuel of prominent characteristics.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Wanwu Li ◽  
Farrukh Raza Amin ◽  
Yanshuai Fu ◽  
Han Zhang ◽  
Yanfeng He ◽  
...  

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2891-2905
Author(s):  
Arnaldo Martinez ◽  
Lourdes Meriño ◽  
Alberto Albis ◽  
Jorge Ortega

Kinetic analysis for the combustion of three agro-industrial biomass residues (coconut husk, corn husk, and rice husk) was carried out in order to provide information for the generation of energy from them. The analysis was performed using the results of the data obtained by thermogravimetric analysis (TGA) at three heating rates (10, 20, and 30 K/min). The biomass residues were characterized in terms of proximate analysis, elemental analysis, calorific value, lignin content, α-cellulose content, hemicellulose content, and holocellulose content. The biomass fuels were thermally degraded in an oxidative atmosphere. The results showed that the biomass thermal degradation process is comprised of the combustion of hemicellulose, cellulose, and lignin. The kinetic parameters of the distributed activation energy model indicated that the activation energy distribution for the pseudocomponents follows lignin, cellulose, and hemicellulose in descending order. The activation energy values for each set of reactions are similar between the heating rates, which suggests that it is independent of the heating rate between 10 K/min and 30 K/min. For all the biomass samples, the increased heating rate resulted in the overlap of the hemicellulose and cellulose degradation events.


2021 ◽  
Vol 37 (1) ◽  
pp. 40-45
Author(s):  
Khamael M. Abualnaja ◽  
Hala M. Abo-Dief ◽  
Ola A. Abu Ali ◽  
Abdullah Al-Anazi ◽  
Ashraf T. Mohamed

The oily sludge treatments catch widespread attention. But, management of sludge is difficult and costly undertaking. The oil recovery pyrolysis temperature, heating rate and carbon wt.% is discussed. The recovered aliphatic, aromatic, elemental components and gases were obtained with respect to the nitrogen flow rate. The present work showed that as the heating rate increases, both the %pyrolysis oil and gases increases up to 600 OC, while the %pyrolysis char decreases. Beyond 600 OC, the pyrolysis gases% increases, the pyrolysis oil% decreases while the %pyrolysis char continuous decreases. Gas chromatography, and calorific value used to examine the hydrocarbon compositions of the virgin, sludge, and pyrolysis oils.


2021 ◽  
Vol 15 (1) ◽  
pp. 97-104
Author(s):  
Peiru Zhu ◽  
Jiayang Liu ◽  
Jun Ma ◽  
Lian Li ◽  
Xueying Zhang

With hydrothermal carbonization (HTC) treatment, wet biomass can be rapidly converted into hydrochar product with high-carbon content and calorific value. The current study employed glucose, protein, and cellulose as raw materials to investigate the effects of reaction temperature and residence time on characteristics of hydrochars. Results showed that the optimal reaction temperatures for glucose, protein, and cellulose were 240 °C, 190 °C and 220 °C, respectively. The optimal residence times were 4 h, 3 h and 4 h respectively, under which carbon microspheres with smooth surface and uniform particle size tended to form. The increased temperature promoted decomposition of bio-oil in the hydrothermal system and improved the quality of carbon microspheres, but much higher temperature deformed the surface of the carbon microspheres. Appropriate residence time ensured full growth of carbon microspheres but excessive residence time made the formed carbon microspheres to crosslink with each other, causing roughness to the surface. In addition, comparison of the specific surface area showed that the cellulose carbon microspheres exhibited an absolute advantage.


Sign in / Sign up

Export Citation Format

Share Document