scholarly journals Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing

Prosthesis ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 240-245 ◽  
Author(s):  
Pedro Molinero-Mourelle ◽  
Miguel Gómez-Polo ◽  
Cristina Gómez-Polo ◽  
Rocio Ortega ◽  
Jaime del Río Highsmith ◽  
...  

This article aimed to assess the marginal fit of methacrylate-oligomer-phosphine-oxide curable-resin provisional-fixed dental prostheses made by digital-light-processing (DLP) three-dimensional (3D) printing. A stainless-steel master model with two abutments was scanned, and five three-unit provisional bridges were designed and printed in VITA shade A3.5 curable resin in 50 μm-thick layers. The marginal fit of each abutment was measured at six points using a profile projector. A descriptive data analysis of the fit measurements was performed by descriptive and explorative processes with the SPSS software. The curable-resin provisional restorations made by DLP 3D printing reached values of 46.37 μm (SD: 29.58 μm), which were considered clinically acceptable, with values similar to polyethylene-methacrylate and polyether-ether-ketone provisional restorations.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4781
Author(s):  
Soohyun Bae ◽  
Min-Ho Hong ◽  
Hyunwoo Lee ◽  
Cheong-Hee Lee ◽  
Mihee Hong ◽  
...  

Three-dimensional (3D) printing technologies have been widely used to manufacture crowns and frameworks for fixed dental prostheses. This systematic review and meta-analysis aimed to assess the reliability of the marginal fit of 3D-printed cobalt-chromium-based fixed dental prostheses in comparison to conventional casting methods. Articles published until 25 June 2020, reporting the marginal fit of fixed prostheses fabricated with metal 3D printing, were searched using electronic literature databases. After the screening and quality assessment, 21 eligible peer-reviewed articles were selected. Meta-analysis revealed that the marginal gap of the prostheses manufactured using 3D printing was significantly smaller compared to that manufactured using casting methods (standard mean difference (95% CI): −0.92 (−1.45, −0.38); Z = −3.37; p = 0.0008). The estimated difference between the single and multi-unit types did not differ significantly (p = 0.3573). In the subgroup analysis for the measurement methods, the tendency of marginal discrepancy between the 3D printing and casting groups was significantly different between articles that used direct observation and those that used the silicone replica technique (p < 0.001). Metal 3D printing technologies appear reliable as an alternative to casting methods in terms of the fit of the fixed dental prostheses. In order to analyze the factors influencing manufacturing and confirm the results of this review, further controlled laboratory and clinical studies are required.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1524
Author(s):  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Franklin Afinjuomo ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
...  

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.


2020 ◽  
Vol 45 (1) ◽  
pp. 30-40 ◽  
Author(s):  
A Kessler ◽  
R Hickel ◽  
M Reymus

SUMMARY Three-dimensional (3D) printing is a rapidly developing technology that has gained widespread acceptance in dentistry. Compared to conventional (lost-wax technique) and subtractive computer numeric controlled methods, 3D printing offers process engineering advantages. Materials such as plastics, metals, and ceramics can be manufactured using various techniques. 3D printing was introduced over three decades ago. Today, it is experiencing rapid development due to the expiration of many patents and is often described as the key technology of the next industrial revolution. The transition to its clinical application in dentistry is highly dependent on the available materials, which must not only provide the required accuracy but also the necessary biological and physical properties. The aim of this work is to provide an up-to-date overview of the different printing techniques: stereolithography, digital light processing, photopolymer jetting, material jetting, binder jetting, selective laser sintering, selective laser melting, and fused filament fabrication. Additionally, particular attention is paid to the materials used in dentistry and their clinical application.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tangi Aubert ◽  
Jen-Yu Huang ◽  
Kai Ma ◽  
Tobias Hanrath ◽  
Ulrich Wiesner

Abstract The convergence of 3D printing techniques and nanomaterials is generating a compelling opportunity space to create advanced materials with multiscale structural control and hierarchical functionalities. While most nanoparticles consist of a dense material, less attention has been payed to 3D printing of nanoparticles with intrinsic porosity. Here, we combine ultrasmall (about 10 nm) silica nanocages with digital light processing technique for the direct 3D printing of hierarchically porous parts with arbitrary shapes, as well as tunable internal structures and high surface area. Thanks to the versatile and orthogonal cage surface modifications, we show how this approach can be applied for the implementation and positioning of functionalities throughout 3D printed objects. Furthermore, taking advantage of the internal porosity of the printed parts, an internal printing approach is proposed for the localized deposition of a guest material within a host matrix, enabling complex 3D material designs.


2015 ◽  
Vol 114 (5) ◽  
pp. 686-692 ◽  
Author(s):  
Harald Nesse ◽  
Dina Mari Åkervik Ulstein ◽  
Malene Myhre Vaage ◽  
Marit Øilo

2010 ◽  
Vol 37 (4) ◽  
pp. 283-291 ◽  
Author(s):  
P. KOHORST ◽  
H. BRINKMANN ◽  
M. P. DITTMER ◽  
L. BORCHERS ◽  
M. STIESCH

The selection of the optimum scaffold fabrication method becomes challenging due to a variety of manufacturing methods, existing biomaterials and technical requirements. Although, Digital light processing (DLP) 3D printing process is one of the SLA techniques which commonly used to fabricate tissue engineering scaffold, however, there is no report published on the fabrication of tissue engineering scaffold-based PEGDA filled with Aramid Nanofiber (ANFs). Hence, the feasible parameter setting for fabricating this material using DLP technique is currently unknown. This work aims to establish the feasible setting parameter via DLP 3D printing to fabricate PEGDA/ANFs 3D tissue engineering scaffold. Preliminary study has been done to identify the accurate composition and curing time setting in producing scaffold. In this work, the researcher has proved the potential and capability of these novel composition biomaterial PEGDA/ANFs to be print via DLP-3D printing technique to form a 3D structure which is not yet been established and has not reported elsewhere.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2660 ◽  
Author(s):  
Kang Lin ◽  
Rakib Sheikh ◽  
Sara Romanazzo ◽  
Iman Roohani

In this review, we summarize the challenges of the three-dimensional (3D) printing of porous bioceramics and their translational hurdles to clinical applications. The state-of-the-art of the major 3D printing techniques (powder-based and slurry-based), their limitations and key processing parameters are discussed in detail. The significant roadblocks that prevent implementation of 3D printed bioceramics in tissue engineering strategies, and medical applications are outlined, and the future directions where new research may overcome the limitations are proposed. In recent years, there has been an increasing demand for a nanoscale control in 3D fabrication of bioceramic scaffolds via emerging techniques such as digital light processing, two-photon polymerization, or large area maskless photopolymerization. However, these techniques are still in a developmental stage and not capable of fabrication of large-sized bioceramic scaffolds; thus, there is a lack of sufficient data to evaluate their contribution. This review will also not cover polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics and non-porous bioceramics.


Sign in / Sign up

Export Citation Format

Share Document