scholarly journals Experimental Investigation of a Cable Robot Recovery Strategy

Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Giovanni Boschetti ◽  
Riccardo Minto ◽  
Alberto Trevisani

Developing an emergency procedure for cable-driven parallel robots is not a trivial process, since it is not possible to halt the end-effector by quickly braking the actuators as in rigid-link manipulators. For this reason, the cable robot recovery strategy is an important topic of research, and the literature provides several approaches. However, the computational efficiency of the recovery algorithm is fundamental for real-time applications. Thus, this paper presents a recovery strategy adopted in an experimental setup consisting of a three degrees-of-freedom (3-DOF) suspended cable robot controlled by an industrial PC. The presentation of the used control system lists the industrial-grade components installed, further highlighting the industrial implication of the work. Lastly, the experimental validation of the recovery strategy proves the effectiveness of the work.

2020 ◽  
Vol 10 (20) ◽  
pp. 7362
Author(s):  
Giovanni Boschetti ◽  
Riccardo Minto ◽  
Alberto Trevisani

Cable-driven parallel robots offer several benefits in terms of workspace size and design cost with respect to rigid-link manipulators. However, implementing an emergency procedure for these manipulators is not trivial, since stopping the actuators abruptly does not imply that the end-effector rests at a stable position. This paper improves a previous recovery strategy by introducing the physics of the actuators, i.e., torque limits, inertia, and friction. Such features deeply affect the reachable acceleration during the recovery trajectory. The strategy has been applied to a simulated point-mass suspended cable robot with three translational degrees of freedom to prove its effectiveness and feasibility. The acceleration limits during the recovery phase were compared with the ones obtained with the previous method, thus confirming the necessity of contemplating the properties of the actuators. The proposed strategy can be implemented in a real-time environment, which makes it suitable for immediate application to an industrial environment.


2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Hamed Khakpour ◽  
Lionel Birglen ◽  
Souheil-Antoine Tahan

In this paper, a new three degrees of freedom (DOF) differentially actuated cable parallel robot is proposed. This mechanism is driven by a prismatic actuator and three cable differentials. Through this design, the idea of using differentials in the structure of a spatial cable robot is investigated. Considering their particular properties, the kinematic analysis of the robot is presented. Then, two indices are defined to evaluate the workspaces of the robot. Using these indices, the robot is subsequently optimized. Finally, the performance of the optimized differentially driven robot is compared with fully actuated mechanisms. The results show that through a proper design methodology, the robot can have a larger workspace and better performance using differentials than the fully driven cable robots using the same number of actuators.


Author(s):  
Mustafa Özdemir

Planar two-legged parallel robots with three degrees of freedom have been suggested in the literature as a solution to reduce the leg interference problem of their conventional three-legged counterparts, and since then have attracted considerable attention. This paper presents a singularity analysis of these robots. Three alternatives, namely the robots with 2-RRR, 2-RPR, and 2-PRR structures are considered. Type I, II, and III singularity conditions are obtained taking into account all possible actuation schemes. Several singularity-free actuation schemes are enumerated and discussed. The performed analysis also shows that adjustable designs are possible for manipulators with 2-PRR structures to have singularity-free operation. The proposed design concept and its effectiveness are illustrated through numerical examples.


2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Sheng Xiang ◽  
Haibo Gao ◽  
Zhen Liu ◽  
Clément Gosselin

Abstract This paper proposes a dynamic point-to-point trajectory planning technique for three degrees-of-freedom (DOFs) cable-suspended parallel robots. The proposed technique is capable of generating feasible multiple-swing trajectories that reach points beyond the footprint of the robot. Tree search algorithms are used to automatically determine a sequence of intermediate points to enhance the versatility of the planning technique. To increase the efficiency of the tree search, a one-swing motion primitive and a steering motion primitive are designed based on the dynamic model of the robot. Closed-form expressions for the motion primitives are given, and a corresponding rapid feasibility check process is proposed. An energy-based metric is used to estimate the distance in the Cartesian space between two points of a dynamic point-to-point task, and this system’s specific distance metric speeds up the coverage. The proposed technique is evaluated using a series of Monte Carlo runs, and comparative statistics results are given. Several example trajectories are presented to illustrate the approach. The results are compared with those obtained with the existing state-of-the-art methods, and the proposed technique is shown to be more general compared to previous analytical planning techniques while generating smoother trajectories than traditional rapidly exploring randomized tree (RRT) methods.


Author(s):  
Grigore Gogu

The paper presents singularity-free fully-isotropic T1R2-type parallel manipulators (PMs) with three degrees of freedom. The mobile platform has one independent translation (T1) and two rotations (R2). A method is proposed for structural synthesis of fully-isotropic T1R2-type PMs based on the theory of linear transformations. A one-to-one correspondence exists between the actuated joint velocity space and the external velocity space of the moving platform. The Jacobian matrix mapping the two vector spaces of fully-isotropic T1R2-type PMs presented in this paper is the 3x3 identity matrix throughout the entire workspace. The condition number and the determinant of the Jacobian matrix being equal to one, the manipulator performs very well with regard to force and motion transmission capabilities. As far as we are aware, this paper presents for the first time in the literature solutions of singularity-free T1R2-type PMs with decoupled an uncoupled motions, along with the fully-isotropic solutions.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Adrián Peidró ◽  
José María Marín ◽  
Arturo Gil ◽  
Óscar Reinoso

This paper analyzes the multiplicity of the solutions to forward kinematics of two classes of analytic robots: 2RPR-PR robots with a passive leg and 3-RPR robots with nonsimilar flat platform and base. Since their characteristic polynomials cannot have more than two valid roots, one may think that triple solutions, and hence nonsingular transitions between different assembly modes, are impossible for them. However, the authors show that the forward kinematic problems of these robots always admit quadruple solutions and obtain analytically the loci of points of the joint space where these solutions occur. Then, it is shown that performing trajectories in the joint space that enclose these points can produce nonsingular transitions, demonstrating that it is possible to design simple analytic parallel robots with two and three degrees-of-freedom (DOF) and the ability to execute these transitions.


Author(s):  
Se´bastien Briot ◽  
Anatol Pashkevich ◽  
Damien Chablat

In this paper, a new methodology for the optimal design of the secondary geometric parameters (shape of links, size of the platform, etc.) of parallel kinematic machine tools is proposed. This approach aims at minimizing the total mass of the robot under position accuracy constraints. This methodology is applied to two translational parallel robots with three degrees-of-freedom (DOF): the Y-STAR and the UraneSX. The proposed approach is able to speed up the design process and to help the designer to find more quickly a set of design parameters.


2020 ◽  
Vol 10 (24) ◽  
pp. 9067
Author(s):  
Deng Lin ◽  
Giovanni Mottola ◽  
Marco Carricato ◽  
Xiaoling Jiang

Cable-driven parallel robots can provide interesting advantages over conventional robots with rigid links; in particular, robots with a cable-suspended architecture can have very large workspaces. Recent research has shown that dynamic trajectories allow the robot to further increase its workspace by taking advantage of inertial effects. In our work, we consider a three-degrees-of-freedom parallel robot suspended by three cables, with a point-mass end-effector. This model was considered in previous works to analyze the conditions for dynamical feasibility of a trajectory. Here, we enhance the robot’s capabilities by using it as a sling, that is, by throwing a mass at a suitable time. The mass is carried at the end-effector by a gripper, which releases the mass so that it can reach a given target point. Mathematical models are presented that provide guidelines for planning the trajectory. Moreover, results are shown from simulations that include the effect of cable elasticity. Finally, suggestions are offered regarding how such a trajectory can be optimized.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 57 ◽  
Author(s):  
Marco Carpio Alemán ◽  
Roque Saltaren ◽  
Alejandro Rodriguez ◽  
Gerardo Portilla ◽  
Juan Placencia

Cable-Driven Parallel Robots (CDPR) operate over a large positional workspace and a relatively large orientation workspace. In the present work, the expansion of the orientation Wrench Feasible Workspace (WFW) in a planar four-cable passive reconfigurable parallel robot with three degrees of freedom was determined. To this end, we proposed a circular-geometry effector mechanism, whose structure allows automatic mobility of the two anchor points of the cables supporting the End Effector (EE). The WFW of the proposed circular structure robot was compared with that of a traditional robot with a rectangular geometry and fixed anchor points. Considering the feasible geometric and tension forces on the cables, the generated workspace volume of the robot was demonstrated in an analysis-by-intervals. The results were validated by simulating the orientation movements of the robot in ADAMS software and a real experimental test was developed for a hypothetical case. The proposed design significantly expanded the orientation workspace of the robot. The remaining limitation is the segment of the travel space in which the mobile connection points can slide. Overcoming this limitation would enable the maximum rotation of the EE.


Author(s):  
R. Jha ◽  
D. Chablat ◽  
F. Rouillier ◽  
G. Moroz

Trajectory planning is a critical step while programming the parallel manipulators in a robotic cell. The main problem arises when there exists a singular configuration between the two poses of the end-effectors while discretizing the path with a classical approach. This paper presents an algebraic method to check the feasibility of any given trajectories in the workspace. The solutions of the polynomial equations associated with the trajectories are projected in the joint space using Gröbner based elimination methods and the remaining equations are expressed in a parametric form where the articular variables are functions of time t unlike any numerical or discretization method. These formal computations allow to write the Jacobian of the manipulator as a function of time and to check if its determinant can vanish between two poses. Another benefit of this approach is to use a largest workspace with a more complex shape than a cube, cylinder or sphere. For the Orthoglide, a three degrees of freedom parallel robot, three different trajectories are used to illustrate this method.


Sign in / Sign up

Export Citation Format

Share Document