scholarly journals An Effective Classification Scheme for Hyperspectral Image Based on Superpixel and Discontinuity Preserving Relaxation

2019 ◽  
Vol 11 (10) ◽  
pp. 1149 ◽  
Author(s):  
Fuding Xie ◽  
Cunkuan Lei ◽  
Jun Yang ◽  
Cui Jin

Hyperspectral image (HSI) classification is one of the most active topics in remote sensing. However, it is still a nontrivial task to classify the hyperspectral data accurately, since HSI always suffers from a large number of noise pixels, the complexity of the spatial structure of objects and the spectral similarity between different objects. In this study, an effective classification scheme for hyperspectral image based on superpixel and discontinuity preserving relaxation (DPR) is proposed to discriminate land covers of interest. A novel technique for measuring the similarity of a pair of pixels in HSI is suggested to improve the simple linear iterative clustering (SLIC) algorithm. Unlike the existing application of SLIC technique to HSI, the improved SLIC algorithm can be directly used to segment HSI into superpixels without using principal component analysis in advance, and is free of parameters. Furthermore, the proposed three-step classification scheme explores how to effectively use the global spectral information and local spatial structure of hyperspectral data for HSI classification. Compared with the existing two-step classification framework, the use of DPR technology in preprocessing significantly improves the classification accuracy. The effectiveness of the proposed method is verified on three public real hyperspectral datasets. The comparison results of several competitive methods show the superiority of this scheme.

2020 ◽  
Vol 10 (2) ◽  
pp. 463 ◽  
Author(s):  
Fuding Xie ◽  
Cunkuan Lei ◽  
Cui Jin ◽  
Na An

Although superpixel segmentation provides a powerful tool for hyperspectral image (HSI) classification, it is still a challenging problem to classify an HSI at superpixel level because of the characteristics of adaptive size and shape of superpixels. Furthermore, these characteristics of superpixels along with the appearance of noisy pixels makes it difficult to appropriately measure the similarity between two superpixels. Under the assumption that pixels within a superpixel belong to the same class with a high probability, this paper proposes a novel spectral–spatial HSI classification method at superpixel level (SSC-SL). Firstly, a simple linear iterative clustering (SLIC) algorithm is improved by introducing a new similarity and a ranking technique. The improved SLIC, specifically designed for HSI, can straightly segment HSI with arbitrary dimensionality into superpixels, without consulting principal component analysis beforehand. In addition, a superpixel-to-superpixel similarity is newly introduced. The defined similarity is independent of the shape of superpixel, and the influence of noisy pixels on the similarity is weakened. Finally, the classification task is accomplished by labeling each unlabeled superpixel according to the nearest labeled superpixel. In the proposed superpixel-level classification scheme, each superpixel is regarded as a sample. This obviously greatly reduces the data volume to be classified. The experimental results on three real hyperspectral datasets demonstrate the superiority of the proposed spectral–spatial classification method over several comparative state-of-the-art classification approaches, in terms of classification accuracy.


2021 ◽  
Vol 13 (3) ◽  
pp. 526
Author(s):  
Shengliang Pu ◽  
Yuanfeng Wu ◽  
Xu Sun ◽  
Xiaotong Sun

The nascent graph representation learning has shown superiority for resolving graph data. Compared to conventional convolutional neural networks, graph-based deep learning has the advantages of illustrating class boundaries and modeling feature relationships. Faced with hyperspectral image (HSI) classification, the priority problem might be how to convert hyperspectral data into irregular domains from regular grids. In this regard, we present a novel method that performs the localized graph convolutional filtering on HSIs based on spectral graph theory. First, we conducted principal component analysis (PCA) preprocessing to create localized hyperspectral data cubes with unsupervised feature reduction. These feature cubes combined with localized adjacent matrices were fed into the popular graph convolution network in a standard supervised learning paradigm. Finally, we succeeded in analyzing diversified land covers by considering local graph structure with graph convolutional filtering. Experiments on real hyperspectral datasets demonstrated that the presented method offers promising classification performance compared with other popular competitors.


Author(s):  
A. K. Singh ◽  
H. V. Kumar ◽  
G. R. Kadambi ◽  
J. K. Kishore ◽  
J. Shuttleworth ◽  
...  

In this paper, the quality metrics evaluation on hyperspectral images has been presented using k-means clustering and segmentation. After classification the assessment of similarity between original image and classified image is achieved by measurements of image quality parameters. Experiments were carried out on four different types of hyperspectral images. Aerial and spaceborne hyperspectral images with different spectral and geometric resolutions were considered for quality metrics evaluation. Principal Component Analysis (PCA) has been applied to reduce the dimensionality of hyperspectral data. PCA was ultimately used for reducing the number of effective variables resulting in reduced complexity in processing. In case of ordinary images a human viewer plays an important role in quality evaluation. Hyperspectral data are generally processed by automatic algorithms and hence cannot be viewed directly by human viewers. Therefore evaluating quality of classified image becomes even more significant. An elaborate comparison is made between k-means clustering and segmentation for all the images by taking Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), Maximum Squared Error, ratio of squared norms called L2RAT and Entropy. First four parameters are calculated by comparing the quality of original hyperspectral image and classified image. Entropy is a measure of uncertainty or randomness which is calculated for classified image. Proposed methodology can be used for assessing the performance of any hyperspectral image classification techniques.


2018 ◽  
Vol 10 (12) ◽  
pp. 2036 ◽  
Author(s):  
Jiaojiao Li ◽  
Bobo Xi ◽  
Qian Du ◽  
Rui Song ◽  
Yunsong Li ◽  
...  

Extreme-learning machines (ELM) have attracted significant attention in hyperspectral image classification due to their extremely fast and simple training structure. However, their shallow architecture may not be capable of further improving classification accuracy. Recently, deep-learning-based algorithms have focused on deep feature extraction. In this paper, a deep neural network-based kernel extreme-learning machine (KELM) is proposed. Furthermore, an excellent spatial guided filter with first-principal component (GFFPC) is also proposed for spatial feature enhancement. Consequently, a new classification framework derived from the deep KELM network and GFFPC is presented to generate deep spectral and spatial features. Experimental results demonstrate that the proposed framework outperforms some state-of-the-art algorithms with very low cost, which can be used for real-time processes.


2018 ◽  
Vol 7 (7) ◽  
pp. 284 ◽  
Author(s):  
Fuding Xie ◽  
Dongcui Hu ◽  
Fangfei Li ◽  
Jun Yang ◽  
Deshan Liu

Hyperspectral image (HSI) classification is a fundamental and challenging problem in remote sensing and its various applications. However, it is difficult to perfectly classify remotely sensed hyperspectral data by directly using classification techniques developed in pattern recognition. This is partially owing to a multitude of noise points and the limited training samples. Based on multinomial logistic regression (MLR), the local mean-based pseudo nearest neighbor (LMPNN) rule, and the discontinuity preserving relaxation (DPR) method, in this paper, a semi-supervised method for HSI classification is proposed. In pre-processing and post-processing, the DPR strategy is adopted to denoise the original hyperspectral data and improve the classification accuracy, respectively. The application of two classifiers, MLR and LMPNN, can automatically acquire more labeled samples in terms of a few labeled instances per class. This is termed the pre-classification procedure. The final classification result of the HSI is obtained by employing the MLRsub approach. The effectiveness of the proposal is experimentally evaluated by two real hyperspectral datasets, which are widely used to test the performance of the HSI classification algorithm. The comparison results using several competing methods confirm that the proposed method is effective, even for limited training samples.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4744
Author(s):  
Huawei Cui ◽  
Zhishang Cheng ◽  
Peng Li ◽  
Aimin Miao

Vigor identification in sweet corn seeds is important for seed germination, crop yield, and quality. In this study, hyperspectral image (HSI) technology integrated with germination tests was applied for feature association analysis and germination performance prediction of sweet corn seeds. In this study, 89 sweet corn seeds (73 for training and the other 16 for testing) were studied and hyperspectral imaging at the spectral range of 400–1000 nm was applied as a nondestructive and accurate technique to identify seed vigor. The root length and seedling length which represent the seed vigor were measured, and principal component regression (PCR), partial least squares (PLS), and kernel principal component regression (KPCR) were used to establish the regression relationship between the hyperspectral feature of seeds and the germination results. Specifically, the relevant characteristic band associated with seed vigor based on the highest correlation coefficient (HCC) was constructed for optimal wavelength selection. The hyperspectral data features were selected by genetic algorithm (GA), successive projections algorithm (SPA), and HCC. The results indicated that the hyperspectral data features obtained based on the HCC method have better prediction results on the seedling length and root length than SPA and GA. By comparing the regression results of KPCR, PCR, and PLS, it can be concluded that the hyperspectral method can predict the root length with a correlation coefficient of 0.7805. The prediction results of different feature selection and regression algorithms for the seedling length were up to 0.6074. The results indicated that, based on hyperspectral technology, the prediction of seedling root length was better than that of seed length.


Author(s):  
D. Li ◽  
L. Xu ◽  
J. Peng ◽  
J. Ma

Hyperspectral images (HSIs) denoising is a critical research area in image processing duo to its importance in improving the quality of HSIs, which has a negative impact on object detection and classification and so on. In this paper, we develop a noise reduction method based on principal component analysis (PCA) for hyperspectral imagery, which is dependent on the assumption that the noise can be removed by selecting the leading principal components. The main contribution of paper is to introduce the spectral spatial structure and nonlocal similarity of the HSIs into the PCA denoising model. PCA with spectral spatial structure can exploit spectral correlation and spatial correlation of HSI by using 3D blocks instead of 2D patches. Nonlocal similarity means the similarity between the referenced pixel and other pixels in nonlocal area, where Mahalanobis distance algorithm is used to estimate the spatial spectral similarity by calculating the distance in 3D blocks. The proposed method is tested on both simulated and real hyperspectral images, the results demonstrate that the proposed method is superior to several other popular methods in HSI denoising.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Haifeng Sima ◽  
Pei Liu ◽  
Lanlan Liu ◽  
Aizhong Mi ◽  
Jianfang Wang

Aiming at solving the difficulty of modeling on spatial coherence, complete feature extraction, and sparse representation in hyperspectral image classification, a joint sparse representation classification method is investigated by flexible patches sampling of superpixels. First, the principal component analysis and total variation diffusion are employed to form the pseudo color image for simplifying superpixels computing with (simple linear iterative clustering) SLIC model. Then, we design a joint sparse recovery model by sampling overcomplete patches of superpixels to estimate joint sparse characteristics of test pixel, which are carried out on the orthogonal matching pursuit (OMP) algorithm. At last, the pixel is labeled according to the minimum distance constraint for final classification based on the joint sparse coefficients and structured dictionary. Experiments conducted on two real hyperspectral datasets show the superiority and effectiveness of the proposed method.


2019 ◽  
Vol 11 (19) ◽  
pp. 2238 ◽  
Author(s):  
Leilei Jiao ◽  
Weiwei Sun ◽  
Gang Yang ◽  
Guangbo Ren ◽  
Yinnian Liu

Mapping different land cover types with satellite remote sensing data is significant for restoring and protecting natural resources and ecological services in coastal wetlands. In this paper, we propose a hierarchical classification framework (HCF) that implements two levels of classification scheme to identify different land cover types of coastal wetlands. The first level utilizes the designed decision tree to roughly group land covers into four rough classes and the second level combines multiple features (i.e., spectral feature, texture feature and geometric feature) of each class to distinguish different subtypes of land covers in each rough class. Two groups of classification experiments on Landsat and Sentinel multispectral data and China Gaofen (GF)-5 hyperspectral data are carried out in order to testify the classification behaviors of two famous coastal wetlands of China, that is, Yellow River Estuary and Yancheng coastal wetland. Experimental results on Landsat data show that the proposed HCF performs better than support vector machine and random forest in classifying land covers of coastal wetlands. Moreover, HCF is suitable for both multispectral data and hyperspectral data and the GF-5 data is superior to Landsat-8 and Sentinel-2 multispectral data in obtaining fine classification results of coastal wetlands.


Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 330
Author(s):  
Mohamed Ismail ◽  
Milica Orlandić

Hyperspectral image classification has been increasingly used in the field of remote sensing. In this study, a new clustering framework for large-scale hyperspectral image (HSI) classification is proposed. The proposed four-step classification scheme explores how to effectively use the global spectral information and local spatial structure of hyperspectral data for HSI classification. Initially, multidimensional Watershed is used for pre-segmentation. Region-based hierarchical hyperspectral image segmentation is based on the construction of Binary partition trees (BPT). Each segmented region is modeled while using first-order parametric modelling, which is then followed by a region merging stage using HSI regional spectral properties in order to obtain a BPT representation. The tree is then pruned to obtain a more compact representation. In addition, principal component analysis (PCA) is utilized for HSI feature extraction, so that the extracted features are further incorporated into the BPT. Finally, an efficient variant of k-means clustering algorithm, called filtering algorithm, is deployed on the created BPT structure, producing the final cluster map. The proposed method is tested over eight publicly available hyperspectral scenes with ground truth data and it is further compared with other clustering frameworks. The extensive experimental analysis demonstrates the efficacy of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document