scholarly journals Segment-Based Clustering of Hyperspectral Images Using Tree-Based Data Partitioning Structures

Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 330
Author(s):  
Mohamed Ismail ◽  
Milica Orlandić

Hyperspectral image classification has been increasingly used in the field of remote sensing. In this study, a new clustering framework for large-scale hyperspectral image (HSI) classification is proposed. The proposed four-step classification scheme explores how to effectively use the global spectral information and local spatial structure of hyperspectral data for HSI classification. Initially, multidimensional Watershed is used for pre-segmentation. Region-based hierarchical hyperspectral image segmentation is based on the construction of Binary partition trees (BPT). Each segmented region is modeled while using first-order parametric modelling, which is then followed by a region merging stage using HSI regional spectral properties in order to obtain a BPT representation. The tree is then pruned to obtain a more compact representation. In addition, principal component analysis (PCA) is utilized for HSI feature extraction, so that the extracted features are further incorporated into the BPT. Finally, an efficient variant of k-means clustering algorithm, called filtering algorithm, is deployed on the created BPT structure, producing the final cluster map. The proposed method is tested over eight publicly available hyperspectral scenes with ground truth data and it is further compared with other clustering frameworks. The extensive experimental analysis demonstrates the efficacy of the proposed method.

2021 ◽  
Vol 13 (3) ◽  
pp. 526
Author(s):  
Shengliang Pu ◽  
Yuanfeng Wu ◽  
Xu Sun ◽  
Xiaotong Sun

The nascent graph representation learning has shown superiority for resolving graph data. Compared to conventional convolutional neural networks, graph-based deep learning has the advantages of illustrating class boundaries and modeling feature relationships. Faced with hyperspectral image (HSI) classification, the priority problem might be how to convert hyperspectral data into irregular domains from regular grids. In this regard, we present a novel method that performs the localized graph convolutional filtering on HSIs based on spectral graph theory. First, we conducted principal component analysis (PCA) preprocessing to create localized hyperspectral data cubes with unsupervised feature reduction. These feature cubes combined with localized adjacent matrices were fed into the popular graph convolution network in a standard supervised learning paradigm. Finally, we succeeded in analyzing diversified land covers by considering local graph structure with graph convolutional filtering. Experiments on real hyperspectral datasets demonstrated that the presented method offers promising classification performance compared with other popular competitors.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4436
Author(s):  
Mohammad Al Ktash ◽  
Mona Stefanakis ◽  
Barbara Boldrini ◽  
Edwin Ostertag ◽  
Marc Brecht

A laboratory prototype for hyperspectral imaging in ultra-violet (UV) region from 225 to 400 nm was developed and used to rapidly characterize active pharmaceutical ingredients (API) in tablets. The APIs are ibuprofen (IBU), acetylsalicylic acid (ASA) and paracetamol (PAR). Two sample sets were used for a comparison purpose. Sample set one comprises tablets of 100% API and sample set two consists of commercially available painkiller tablets. Reference measurements were performed on the pure APIs in liquid solutions (transmission) and in solid phase (reflection) using a commercial UV spectrometer. The spectroscopic part of the prototype is based on a pushbroom imager that contains a spectrograph and charge-coupled device (CCD) camera. The tablets were scanned on a conveyor belt that is positioned inside a tunnel made of polytetrafluoroethylene (PTFE) in order to increase the homogeneity of illumination at the sample position. Principal component analysis (PCA) was used to differentiate the hyperspectral data of the drug samples. The first two PCs are sufficient to completely separate all samples. The rugged design of the prototype opens new possibilities for further development of this technique towards real large-scale application.


Author(s):  
A. K. Singh ◽  
H. V. Kumar ◽  
G. R. Kadambi ◽  
J. K. Kishore ◽  
J. Shuttleworth ◽  
...  

In this paper, the quality metrics evaluation on hyperspectral images has been presented using k-means clustering and segmentation. After classification the assessment of similarity between original image and classified image is achieved by measurements of image quality parameters. Experiments were carried out on four different types of hyperspectral images. Aerial and spaceborne hyperspectral images with different spectral and geometric resolutions were considered for quality metrics evaluation. Principal Component Analysis (PCA) has been applied to reduce the dimensionality of hyperspectral data. PCA was ultimately used for reducing the number of effective variables resulting in reduced complexity in processing. In case of ordinary images a human viewer plays an important role in quality evaluation. Hyperspectral data are generally processed by automatic algorithms and hence cannot be viewed directly by human viewers. Therefore evaluating quality of classified image becomes even more significant. An elaborate comparison is made between k-means clustering and segmentation for all the images by taking Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), Maximum Squared Error, ratio of squared norms called L2RAT and Entropy. First four parameters are calculated by comparing the quality of original hyperspectral image and classified image. Entropy is a measure of uncertainty or randomness which is calculated for classified image. Proposed methodology can be used for assessing the performance of any hyperspectral image classification techniques.


2019 ◽  
Vol 8 (3) ◽  
pp. 1081-1087
Author(s):  
K. Mallikharjuna Rao ◽  
B. Srinivasa Rao ◽  
B. Sai Chandana ◽  
J. Harikiran

The hyperspectral data contains hundreds of narrows bands representing the same scene on earth, with each pixel has a continuous reflectance spectrum. The first attempts to analysehyperspectral images were based on techniques that were developed for multispectral images by randomly selecting few spectral channels, usually less than seven. This random selection of bands degrades the performance of segmentation algorithm on hyperspectraldatain terms of accuracies. In this paper, a new framework is designed for the analysis of hyperspectral image by taking the information from all the data channels with dimensionality reduction method using subset selection and hierarchical clustering. A methodology based on subset construction is used for selecting k informative bands from d bands dataset. In this selection, similarity metrics such as Average Pixel Intensity [API], Histogram Similarity [HS], Mutual Information [MI] and Correlation Similarity [CS] are used to create k distinct subsets and from each subset, a single band is selected. The informative bands which are selected are merged into a single image using hierarchical fusion technique. After getting fused image, Hierarchical clustering algorithm is used for segmentation of image. The qualitative and quantitative analysis shows that CS similarity metric in dimensionality reduction algorithm gets high quality segmented image.


2019 ◽  
Vol 11 (10) ◽  
pp. 1149 ◽  
Author(s):  
Fuding Xie ◽  
Cunkuan Lei ◽  
Jun Yang ◽  
Cui Jin

Hyperspectral image (HSI) classification is one of the most active topics in remote sensing. However, it is still a nontrivial task to classify the hyperspectral data accurately, since HSI always suffers from a large number of noise pixels, the complexity of the spatial structure of objects and the spectral similarity between different objects. In this study, an effective classification scheme for hyperspectral image based on superpixel and discontinuity preserving relaxation (DPR) is proposed to discriminate land covers of interest. A novel technique for measuring the similarity of a pair of pixels in HSI is suggested to improve the simple linear iterative clustering (SLIC) algorithm. Unlike the existing application of SLIC technique to HSI, the improved SLIC algorithm can be directly used to segment HSI into superpixels without using principal component analysis in advance, and is free of parameters. Furthermore, the proposed three-step classification scheme explores how to effectively use the global spectral information and local spatial structure of hyperspectral data for HSI classification. Compared with the existing two-step classification framework, the use of DPR technology in preprocessing significantly improves the classification accuracy. The effectiveness of the proposed method is verified on three public real hyperspectral datasets. The comparison results of several competitive methods show the superiority of this scheme.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4744
Author(s):  
Huawei Cui ◽  
Zhishang Cheng ◽  
Peng Li ◽  
Aimin Miao

Vigor identification in sweet corn seeds is important for seed germination, crop yield, and quality. In this study, hyperspectral image (HSI) technology integrated with germination tests was applied for feature association analysis and germination performance prediction of sweet corn seeds. In this study, 89 sweet corn seeds (73 for training and the other 16 for testing) were studied and hyperspectral imaging at the spectral range of 400–1000 nm was applied as a nondestructive and accurate technique to identify seed vigor. The root length and seedling length which represent the seed vigor were measured, and principal component regression (PCR), partial least squares (PLS), and kernel principal component regression (KPCR) were used to establish the regression relationship between the hyperspectral feature of seeds and the germination results. Specifically, the relevant characteristic band associated with seed vigor based on the highest correlation coefficient (HCC) was constructed for optimal wavelength selection. The hyperspectral data features were selected by genetic algorithm (GA), successive projections algorithm (SPA), and HCC. The results indicated that the hyperspectral data features obtained based on the HCC method have better prediction results on the seedling length and root length than SPA and GA. By comparing the regression results of KPCR, PCR, and PLS, it can be concluded that the hyperspectral method can predict the root length with a correlation coefficient of 0.7805. The prediction results of different feature selection and regression algorithms for the seedling length were up to 0.6074. The results indicated that, based on hyperspectral technology, the prediction of seedling root length was better than that of seed length.


2019 ◽  
Vol 13 (4) ◽  
pp. 403-409
Author(s):  
Hui Qi ◽  
Jinqing Li ◽  
Xiaoqiang Di ◽  
Weiwu Ren ◽  
Fengrong Zhang

Background: K-means algorithm is implemented through two steps: initialization and subsequent iterations. Initialization is to select the initial cluster center, while subsequent iterations are to continuously change the cluster center until it won't change any more or the number of iterations reaches its maximum. K-means algorithm is so sensitive to the cluster center selected during initialization that the selection of a different initial cluster center will influence the algorithm performance. Therefore, improving the initialization process has become an important means of K-means performance improvement. Methods: This paper uses a new strategy to select the initial cluster center. It first calculates the minimum and maximum values of the data in a certain index (For lower-dimensional data, such as twodimensional data, features with larger variance, or the distance to the origin can be selected; for higher-dimensional data, PCA can be used to select the principal component with the largest variance), and then divides the range into equally-sized sub-ranges. Next adjust the sub-ranges based on the data distribution so that each sub-range contains as much data as possible. Finally, the mean value of the data in each sub-range is calculated and used as the initial clustering center. Results: The theoretical analysis shows that although the time complexity of the initialization process is linear, the algorithm has the characteristics of the superlinear initialization method. This algorithm is applied to two-dimensional GPS data analysis and high-dimensional network attack detection. Experimental results show that this algorithm achieves high clustering performance and clustering speed. Conclusion: This paper reduces the subsequent iterations of K-means algorithm without compromising the clustering performance, which makes it suitable for large-scale data clustering. This algorithm can not only be applied to low-dimensional data clustering, but also suitable for highdimensional data.


Author(s):  
Jing Li ◽  
Xiaorun Li ◽  
Liaoying Zhao

The minimization problem of reconstruction error over large hyperspectral image data is one of the most important problems in unsupervised hyperspectral unmixing. A variety of algorithms based on nonnegative matrix factorization (NMF) have been proposed in the literature to solve this minimization problem. One popular optimization method for NMF is the projected gradient descent (PGD). However, as the algorithm must compute the full gradient on the entire dataset at every iteration, the PGD suffers from high computational cost in the large-scale real hyperspectral image. In this paper, we try to alleviate this problem by introducing a mini-batch gradient descent-based algorithm, which has been widely used in large-scale machine learning. In our method, the endmember can be updated pixel set by pixel set while abundance can be updated band set by band set. Thus, the computational cost is lowered to a certain extent. The performance of the proposed algorithm is quantified in the experiment on synthetic and real data.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2624 ◽  
Author(s):  
Van Huynh ◽  
Van Ngo ◽  
Dinh Le ◽  
Nhi Nguyen

In this paper, we propose a new scheme for probabilistic power flow in networks with renewable power generation by making use of a data clustering technique. The proposed clustering technique is based on the combination of Principal Component Analysis and Differential Evolution clustering algorithm to deal with input random variables in probabilistic power flow. Extensive testing on the modified IEEE-118 bus test system shows good performance of the proposed approach in terms of significant reduction of computation time compared to the traditional Monte Carlo simulation, while maintaining an appropriate level of accuracy.


2019 ◽  
Vol 11 (3) ◽  
pp. 223 ◽  
Author(s):  
Kaiqiang Zhu ◽  
Yushi Chen ◽  
Pedram Ghamisi ◽  
Xiuping Jia ◽  
Jón Atli Benediktsson

Capsule networks can be considered to be the next era of deep learning and have recently shown their advantages in supervised classification. Instead of using scalar values to represent features, the capsule networks use vectors to represent features, which enriches the feature presentation capability. This paper introduces a deep capsule network for hyperspectral image (HSI) classification to improve the performance of the conventional convolutional neural networks (CNNs). Furthermore, a modification of the capsule network named Conv-Capsule is proposed. Instead of using full connections, local connections and shared transform matrices, which are the core ideas of CNNs, are used in the Conv-Capsule network architecture. In Conv-Capsule, the number of trainable parameters is reduced compared to the original capsule, which potentially mitigates the overfitting issue when the number of available training samples is limited. Specifically, we propose two schemes: (1) A 1D deep capsule network is designed for spectral classification, as a combination of principal component analysis, CNN, and the Conv-Capsule network, and (2) a 3D deep capsule network is designed for spectral-spatial classification, as a combination of extended multi-attribute profiles, CNN, and the Conv-Capsule network. The proposed classifiers are tested on three widely-used hyperspectral data sets. The obtained results reveal that the proposed models provide competitive results compared to the state-of-the-art methods, including kernel support vector machines, CNNs, and recurrent neural network.


Sign in / Sign up

Export Citation Format

Share Document