scholarly journals Real-Time GNSS-Derived PWV for Typhoon Characterizations: A Case Study for Super Typhoon Mangkhut in Hong Kong

2019 ◽  
Vol 12 (1) ◽  
pp. 104 ◽  
Author(s):  
Qimin He ◽  
Kefei Zhang ◽  
Suqin Wu ◽  
Qingzhi Zhao ◽  
Xiaoming Wang ◽  
...  

Typhoons can be serious natural disasters for the sustainability and development of society. The development of a typhoon usually involves a pre-existing weather disturbance, warm tropical oceans, and a large amount of moisture. This implies that a large variation in the atmospheric water vapor over the path of a typhoon can be used to study the characteristics of the typhoon. This is the reason that the variation in precipitable water vapor (PWV) is often used to capture the signature of a typhoon in meteorology. This study investigates the usability of real-time PWV retrieved from global navigation satellite systems (GNSS) for typhoons’ characterizations, and especially, the following aspects were investigated: (1) The correlation between PWV and atmospheric parameters including pressure, temperature, precipitation, and wind speed; (2) water vapor transportation during a typhoon period; and (3) the correlation between the movement of a typhoon and the transportation of water vapor. The case study selected for this research was Super Typhoon Mangkhut that occurred in mid-September 2018 in Hong Kong. The PWV time series were obtained from a conversion of GNSS-derived zenith total delays (ZTDs) using observations at 10 stations selected from the Hong Kong GNSS continuously operating reference stations (CORS) network, which are also located along the path of the typhoon. The Bernese GNSS Software (ver. 5.2) was used to obtain the ZTDs; and the root mean square (RMS) of the differences between the GNSS-ZTDs and International GNSS Service post-processed ZTDs time series was less than 8 mm. The RMS of the differences between the GNSS-PWVs (i.e., the ZTDs converted PWVs) and radiosonde-derived PWVs (RS-PWVs) time series was less than 2 mm. The changes in PWV reflect the variation in wind speed during the typhoon period to a certain degree, and their correlation coefficient was 0.76, meaning a significant positive correlation. In addition, a new approach was proposed to estimate the direction and speed of a typhoon’s movement using the time difference of PWV arrival at different sites. The direction and speed estimated agreed well with the ones published by the China Meteorological Administration. These results suggest that GNSS-derived PWV has a great potential for the monitoring and even prediction of typhoon events, especially for near real-time warnings.

2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Haoyu Liu ◽  
Lijuan Wang ◽  
Yufan Dai ◽  
Hong Chen

Based on the China Meteorological Administration (CMA) best-track data, the ERA5 reanalysis, and the Global Precipitation Measurement (GPM) precipitation data, this paper analyzes the reasons for the heavy rainfall event of Super Typhoon Rammasun in 2014, and the results are as follows: (1) Rammasun was blocked by the western Pacific subtropical high (WPSH), the continental high, and the mid-latitude westerly trough. Such a stable circulation pattern maintained the vortex circulation of Rammasun. (2) During the period of landfall, the southwest summer monsoon surge was reinforced due to the dramatic increase of the zonal wind and the cross-equatorial flow near 108° E. The results of the dynamic monsoon surge index (DMSI) and boundary water vapor budget (BWVB) show that the monsoon surge kept providing abundant water vapor for Rammasun, which led to the enhanced rainfall. (3) The East Asian monsoon manifested an obvious low-frequency oscillation with a main period of 20–40 days in the summer of 2014, which propagated northward significantly. When the low-frequency oscillation reached the extremely active phase, the monsoon surge hit the maximum and influenced the circulation of Rammasun. Meanwhile, the convergence and water vapor flux associated with the low-frequency oscillation significantly contributed to the heavy rainfall.


2017 ◽  
Author(s):  
Fadwa Alshawaf ◽  
Kyriakos Balidakis ◽  
Galina Dick ◽  
Stefan Heise ◽  
Jens Wickert

Abstract. Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we compare the temporal trends estimated from GNSS time series with those estimated from European Center for Medium-Range Weather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements. We aim at evaluating climate evolution in Germany by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim reanalysis data, and 3) determined based on daily in situ measurements of temperature and relative humidity. The other relevant atmospheric parameters are available from surface measurements of meteorological stations or derived from ERA-Interim. The trends are estimated using two methods, the first applies least squares to seasonally-adjusted time series and the second using the Theil-Sen estimator. The trends estimated at 113 GNSS sites, with 10 and 19 year temporal coverage, varies between −1.5 and 2 mm/decade with standard deviations below 0.25 mm/decade. These values depend on the length and the variations of the time series. Therefore, we estimated the PWV trends using ERA-Interim and surface measurements spanning from 1991 to 2016 (26 years) at synoptic 227 stations over Germany. The former shows positive PWV trends below 0.5 mm/decade while the latter shows positive trends below 0.9 mm/decade with standard deviations below 0.03 mm/decade. The estimated PWV trends correlate with the temperature trends.


2020 ◽  
Author(s):  
hazem al-najjar ◽  
Nadia Al-Rousan ◽  
Ismail A. Elhaty

Abstract Air pollution depends on seasons, wind speed, temperature, wind direction and air pressure. The effect of different seasons on air pollution is not fully addressed in the reported works. The current study investigated the impact of season on air pollutants including SO2, PM10, NO, NOX, and O3 using NARX method. In the applied methodology, a feature selection was used with each pollutant to find the most important season(s). Afterward, six models are designed based on the feature selection to show the impact of seasons in finding the concentration of pollutants. A case study is conducted on Esenyurt which is one of the most populated and industrialized places in Istanbul to validate the proposed framework. The performance of using all of the designed models with different pollutants showed that using season effect led to improving the performance of predictor and generating high R2 and low error functions.


2020 ◽  
Vol 110 (6) ◽  
pp. 2647-2660
Author(s):  
Nikolaj Dahmen ◽  
Roland Hohensinn ◽  
John Clinton

ABSTRACT The 2016 Mw 7.0 Kumamoto earthquake resulted in exceptional datasets of Global Navigation Satellite Systems (GNSS) and seismic data. We explore the spatial similarity of the signals and investigate procedures for combining collocated sensor data. GNSS enables the direct observation of the long-period ground displacements, limited by noise levels in regimes of millimeters to several centimeters. Strong-motion accelerometers are inertial sensors and therefore optimally resolve middle- to high-frequency strong ground motion. The double integration from acceleration to displacement amplifies long-period errors introduced by tilt, rotation, noise, and nonlinear instrument responses and can lead to large nonphysical drifts. For the case study of the Kumamoto earthquake, 39 GNSS stations (1  samples/s) with nearby located strong-motion accelerometers (100  samples/s) are investigated. The GNSS waveforms obtained by precise point positioning under real-time conditions prove to be very similar to the postprocessed result. Real-time GNSS and nearby located accelerometers show consistent observations for periods between ∼3–5 and ∼50–100  s. The matching frequency range is defined by the long-period noise of the accelerometer and the low signal-to-noise ratio (SNR) of GNSS, when it comes to small displacements close to its noise level. Current procedures in fusing the data with a Kalman filter are verified for the dataset of this event. Combined data result in a very broadband waveform that covers the optimal frequency range of each sensor. We explore how to integrate fused processing in a real-time network, including event detection and magnitude estimation. Carrying out a statistical test on the GNSS records allows us to identify seismic events and sort out stations with a low SNR, which would otherwise impair the quality of downstream products. The results of this study reinforce the emerging consensus that there is real benefit to collocation GNSS and strong-motion sensors for the monitoring of moderate-to-large earthquakes.


Sign in / Sign up

Export Citation Format

Share Document