scholarly journals Vegetation Fraction Images Derived from PROBA-V Data for Rapid Assessment of Annual Croplands in Brazil

2020 ◽  
Vol 12 (7) ◽  
pp. 1152 ◽  
Author(s):  
Egidio Arai ◽  
Edson Eyji Sano ◽  
Andeise Cerqueira Dutra ◽  
Henrique Luis Godinho Cassol ◽  
Tânia Beatriz Hoffmann ◽  
...  

This paper presents a new method for rapid assessment of the extent of annual croplands in Brazil. The proposed method applies a linear spectral mixing model (LSMM) to PROBA-V time series images to derive vegetation, soil, and shade fraction images for regional analysis. We used S10-TOC (10 days synthesis, 1 km spatial resolution, and top-of-canopy) products for Brazil and S5-TOC (five days synthesis, 100 m spatial resolution, and top-of-canopy) products for Mato Grosso State (Brazilian Legal Amazon). Using the time series of the vegetation fraction images of the whole year (2015 in this case), only one mosaic composed with maximum values of vegetation fraction was generated, allowing detecting and mapping semi-automatically the areas occupied by annual crops during the year. The results (100 m spatial resolution map) for the Mato Grosso State were compared with existing global datasets (Finer Resolution Observation and Monitoring—Global Land Cover (FROM-GLC) and Global Food Security—Support Analyses Data (GFSAD30)). Visually those maps present a good agreement, but the area estimated are not comparable since the agricultural class definition are different for those maps. In addition, we found 11.8 million ha of agricultural areas in the entire Brazilian territory. The area estimation for the Mato Grosso State was 3.4 million ha for 1 km dataset and 5.3 million ha for 100 m dataset. This difference is due to the spatial resolution of the PROBA-V datasets used. A coefficient of determination of 0.82 was found between PROBA-V 100 m and Landsat-8 OLI area estimations for the Mato Grosso State. Therefore, the proposed method is suitable for detecting and mapping annual croplands distribution operationally using PROBA-V datasets for regional analysis.

Land ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 139 ◽  
Author(s):  
Henrique Luis Godinho Cassol ◽  
Egidio Arai ◽  
Edson Eyji Sano ◽  
Andeise Cerqueira Dutra ◽  
Tânia Beatriz Hoffmann ◽  
...  

This paper presents a new approach for rapidly assessing the extent of land use and land cover (LULC) areas in Mato Grosso state, Brazil. The novel idea is the use of an annual time series of fraction images derived from the linear spectral mixing model (LSMM) instead of original bands. The LSMM was applied to the Project for On-Board Autonomy-Vegetation (PROBA-V) 100-m data composites from 2015 (~73 scenes/year, cloud-free images, in theory), generating vegetation, soil, and shade fraction images. These fraction images highlight the LULC components inside the pixels. The other new idea is to reduce these time series to only six single bands representing the maximum and standard deviation values of these fraction images in an annual composite, reducing the volume of data to classify the main LULC classes. The whole image classification process was conducted in the Google Earth Engine platform using the pixel-based random forest algorithm. A set of 622 samples of each LULC class was collected by visual inspection of PROBA-V and Landsat-8 Operational Land Imager (OLI) images and divided into training and validation datasets. The performance of the method was evaluated by the overall accuracy and confusion matrix. The overall accuracy was 92.4%, with the lowest misclassification found for cropland and forestland (<9% error). The same validation data set showed 88% agreement with the LULC map made available by the Landsat-based MapBiomas project. This proposed method has the potential to be used operationally to accurately map the main LULC areas and to rapidly use the PROBA-V dataset at regional or national levels.


2021 ◽  
Vol 13 (14) ◽  
pp. 2675
Author(s):  
Stefan Mayr ◽  
Igor Klein ◽  
Martin Rutzinger ◽  
Claudia Kuenzer

Fresh water is a vital natural resource. Earth observation time-series are well suited to monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily information on globally distributed inland surface water based on MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water quantification is possible. To enhance the quantitative capabilities of this dataset, we systematically access subpixel information on fractional water coverage. For this, a linear mixture model is employed, using classification probability and pure pixel reference information. Classification probability is derived from relative datapoint (pixel) locations in feature space. Pure water and non-water reference pixels are located by combining spatial and temporal information inherent to the time-series. Subsequently, the model is evaluated for different input sets to determine the optimal configuration for global processing and pixel coverage types. The performance of resulting water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe, by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water fraction information is able to improve the product’s performance regarding mixed water/non-water pixels by an average of 11.6% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows good overall performance. The approach enables the systematic provision of water fraction estimates on a global and daily scale, using only the reflectance and temporal information contained in the input time-series.


2019 ◽  
Vol 11 (11) ◽  
pp. 1266 ◽  
Author(s):  
Mingzheng Zhang ◽  
Dehai Zhu ◽  
Wei Su ◽  
Jianxi Huang ◽  
Xiaodong Zhang ◽  
...  

Continuous monitoring of crop growth status using time-series remote sensing image is essential for crop management and yield prediction. The growing season of summer corn in the North China Plain with the period of rain and hot, which makes the acquisition of cloud-free satellite imagery very difficult. Therefore, we focused on developing image datasets with both a high temporal resolution and medium spatial resolution by harmonizing the time-series of MOD09GA Normalized Difference Vegetation Index (NDVI) images and 30-m-resolution GF-1 WFV images using the improved Kalman filter model. The harmonized images, GF-1 images, and Landsat 8 images were then combined and used to monitor the summer corn growth from 5th June to 6th October, 2014, in three counties of Hebei Province, China, in conjunction with meteorological data and MODIS Evapotranspiration Data Set. The prediction residuals ( Δ P R K ) in NDVI between the GF-1 observations and the harmonized images was in the range of −0.2 to 0.2 with Gauss distribution. Moreover, the obtained phenological curves manifested distinctive growth features for summer corn at field scales. Changes in NDVI over time were more effectively evaluated and represented corn growth trends, when considered in conjunction with meteorological data and MODIS Evapotranspiration Data Set. We observed that the NDVI of summer corn showed a process of first decreasing and then rising in the early growing stage and discuss how the temperature and moisture of the environment changed with the growth stage. The study demonstrated that the synthesized dataset constructed using this methodology was highly accurate, with high temporal resolution and medium spatial resolution and it was possible to harmonize multi-source remote sensing imagery by the improved Kalman filter for long-term field monitoring.


2020 ◽  
Vol 12 (4) ◽  
pp. 688 ◽  
Author(s):  
Jacky Lee ◽  
Jeffrey A. Cardille ◽  
Michael T. Coe

Landsat 5 has produced imagery for decades that can now be viewed and manipulated in Google Earth Engine, but a general, automated way of producing a coherent time series from these images—particularly over cloudy areas in the distant past—is elusive. Here, we create a land use and land cover (LULC) time series for part of tropical Mato Grosso, Brazil, using the Bayesian Updating of Land Cover: Unsupervised (BULC-U) technique. The algorithm built backward in time from the GlobCover 2009 data set, a multi-category global LULC data set at 300 m resolution for the year 2009, combining it with Landsat time series imagery to create a land cover time series for the period 1986–2000. Despite the substantial LULC differences between the 1990s and 2009 in this area, much of the landscape remained the same: we asked whether we could harness those similarities and differences to recreate an accurate version of the earlier LULC. The GlobCover basis and the Landsat-5 images shared neither a common spatial resolution nor time frame, But BULC-U successfully combined the labels from the coarser classification with the spatial detail of Landsat. The result was an accurate fine-scale time series that quantified the expansion of deforestation in the study area, which more than doubled in size during this time. Earth Engine directly enabled the fusion of these different data sets held in its catalog: its flexible treatment of spatial resolution, rapid prototyping, and overall processing speed permitted the development and testing of this study. Many would-be users of remote sensing data are currently limited by the need to have highly specialized knowledge to create classifications of older data. The approach shown here presents fewer obstacles to participation and allows a wide audience to create their own time series of past decades. By leveraging both the varied data catalog and the processing speed of Earth Engine, this research can contribute to the rapid advances underway in multi-temporal image classification techniques. Given Earth Engine’s power and deep catalog, this research further opens up remote sensing to a rapidly growing community of researchers and managers who need to understand the long-term dynamics of terrestrial systems.


2020 ◽  
Author(s):  
Nikos Alexandris ◽  
Matteo Piccardo ◽  
Vasileios Syrris ◽  
Alessandro Cescatti ◽  
Gregory Duveiller

&lt;p&gt;The frequency of extreme heat related events is rising. This places the ever growing number of urban dwellers at higher risk. Quantifying these phenomena is important for the development and monitoring of climate change adaptation and mitigation policies. In this context, earth observations offer increasing opportunities to assess these phenomena with an unprecedented level of accuracy and spatial reach. Satellite thermal imaging systems acquire Land Surface Temperature (LST) which is fundamental to run models that study for example hotspots and heatwaves in urban environments.&lt;/p&gt;&lt;p&gt;Current instruments include TIRS on board Landsat 8 and MODIS on board of Terra satellites. These provide LST products on a monthly basis at 100m and twice per day at 1km respectively. Other sensors on board geostationary satellites, such as MSG and GOES-R, produce sub-hourly thermal images. For example the SEVIRI instrument onboard MSG, captures images every 15 minutes. However, this is done at an even coarser spatial resolution, which is 3 to 5 km in the case of SEVIRI. Nevertheless, none of the existing systems can capture LST synchronously with fine spatial resolution at a high temporal frequency, which is a prerequisite for monitoring heat stress in urban environments.&lt;/p&gt;&lt;p&gt;Combining LST time series of high temporal resolution (i.e. sub-daily MODIS- or SEVIRI-derived data) with products of fine spatial resolution (i.e. Landsat 8 products), and potentially other related variables (i.e. reflectance, spectral indices, land cover information, terrain parameters and local climatic variables), facilitates the downscaling of LST estimations. Nonetheless, considering the complexity of how distinct surfaces within a city heat-up differently during the course of a day, such a downscaling is meaningful for practically synchronous observations (e.g. Landsat-8 and MODIS Terra&amp;#8217;s morning observations).&lt;/p&gt;&lt;p&gt;The recently launched ECOSTRESS mission provides multiple times in a day high spatial resolution thermal imagery at 70m. Albeit, recording the same locations on Earth every few days at varying times. We explore the associations between ECOSTRESS and Landsat-8 thermal data, based on the incoming radiation load and distinct surface properties characterised from other datasets. In our approach, first we upscale ECOSTRESS data to simulate Landsat-8 images at moments that coincide the acquisition times of other sensors products. In a second step, using the simulated Landsat-8 images, we downscale LST products acquired at later times, such as MODIS Aqua (ca. 13:30) or even the hourly MSG data. This composite downscaling procedure enables an enhanced LST estimation that opens the way for better diagnostics of the heat stress in urban landscapes.&lt;/p&gt;&lt;p&gt;In this study we discuss in detail the concepts of our approach and present preliminary results produced with the JEODPP, JRC's high throughput computing platform.&lt;/p&gt;


2020 ◽  
Vol 12 (8) ◽  
pp. 1297
Author(s):  
Roberto Filgueiras ◽  
Everardo Chartuni Mantovani ◽  
Elpídio Inácio Fernandes-Filho ◽  
Fernando França da Cunha ◽  
Daniel Althoff ◽  
...  

One of the obstacles in monitoring agricultural crops is the difficulty in understanding and mapping rapid changes of these crops. With the purpose of addressing this issue, this study aimed to model and fuse the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) using Landsat-like images to achieve daily high spatial resolution NDVI. The study was performed for the period of 2017 on a commercial farm of irrigated maize-soybean rotation in the western region of the state of Bahia, Brazil. To achieve the objective, the following procedures were performed: (i) Landsat-like images were upscaled to match the Landsat-8 spatial resolution (30 m); (ii) the reflectance of Landsat-like images was intercalibrated using the Landsat-8 as a reference; (iii) Landsat-like reflectance images were upscaled to match the MODIS sensor spatial resolution (250 m); (iv) regression models were trained daily to model MODIS NDVI using the upscaled Landsat-like reflectance images (250 m) of the closest day as the input; and (v) the intercalibrated version of the Landsat-like images (30 m) used in the previous step was used as the input for the trained model, resulting in a downscaled MODIS NDVI (30 m). To determine the best fitting model, we used the following statistical metrics: coefficient of determination (r2), root mean square error (RMSE), Nash–Sutcliffe efficiency index (NSE), mean bias error (MBE), and mean absolute error (MAE). Among the assessed regression models, the Cubist algorithm was sensitive to changes in agriculture and performed best in modeling of the Landsat-like MODIS NDVI. The results obtained in the present research are promising and can enable the monitoring of dynamic phenomena with images available free of charge, changing the way in which decisions are made using satellite images.


2019 ◽  
Vol 11 (5) ◽  
pp. 601 ◽  
Author(s):  
Sajid Pareeth ◽  
Poolad Karimi ◽  
Mojtaba Shafiei ◽  
Charlotte De Fraiture

Increase in irrigated area, driven by demand for more food production, in the semi-arid regions of Asia and Africa is putting pressure on the already strained available water resources. To cope and manage this situation, monitoring spatial and temporal dynamics of the irrigated area land use at basin level is needed to ensure proper allocation of water. Publicly available satellite data at high spatial resolution and advances in remote sensing techniques offer a viable opportunity. In this study, we developed a new approach using time series of Landsat 8 (L8) data and Random Forest (RF) machine learning algorithm by introducing a hierarchical post-processing scheme to extract key Land Use Land Cover (LULC) types. We implemented this approach for Mashhad basin in Iran to develop a LULC map at 15 m spatial resolution with nine classes for the crop year 2015/2016. In addition, five irrigated land use types were extracted for three crop years—2013/2014, 2014/2015, and 2015/2016—using the RF models. The total irrigated area was estimated at 1796.16 km2, 1581.7 km2 and 1578.26 km2 for the cropping years 2013/2014, 2014/2015 and 2015/2016, respectively. The overall accuracy of the final LULC map was 87.2% with a kappa coefficient of 0.85. The methodology was implemented using open data and open source libraries. The ability of the RF models to extract key LULC types at basin level shows the usability of such approaches for operational near real time monitoring.


2020 ◽  
Vol 12 (1) ◽  
pp. 117 ◽  
Author(s):  
Jiaqi Tian ◽  
Xiaolin Zhu ◽  
Jin Wu ◽  
Miaogen Shen ◽  
Jin Chen

Numerous investigations of urbanization effects on vegetation spring phenology using satellite images have reached a consensus that vegetation spring phenology in urban areas occurs earlier than in surrounding rural areas. Nevertheless, the magnitude of this rural–urban difference is quite different among these studies, especially for studies over the same areas, which implies large uncertainties. One possible reason is that the satellite images used in these studies have different spatial resolutions from 30 m to 1 km. In this study, we investigated the impact of spatial resolution on the rural–urban difference of vegetation spring phenology using satellite images at different spatial resolutions. To be exact, we first generated a dense 10 m NDVI time series through harmonizing Sentinel-2 and Landsat-8 images by data fusion method, and then resampled the 10 m time series to coarser resolutions from 30 m to 8 km to simulate images at different resolutions. Afterwards, to quantify urbanization effects, vegetation spring phenology at each resolution was extracted by a widely used tool, TIMESAT. Last, we calculated the difference between rural and urban areas using an urban extent map derived from NPP VIIRS nighttime light data. Our results reveal: (1) vegetation spring phenology in urban areas happen earlier than rural areas no matter which spatial resolution from 10 m to 8 km is used, (2) the rural–urban difference in vegetation spring phenology is amplified with spatial resolution, i.e., coarse satellite images overestimate the urbanization effects on vegetation spring phenology, and (3) the underlying reason of this overestimation is that the majority of urban pixels in coarser images have higher diversity in terms of spring phenology dates, which leads to spring phenology detected from coarser NDVI time series earlier than the actual dates. This study indicates that spatial resolution is an important factor that affects the accuracy of the assessment of urbanization effects on vegetation spring phenology. For future studies, we suggest that satellite images with a fine spatial resolution are more appropriate to explore urbanization effects on vegetation spring phenology if vegetation species in urban areas is very diverse.


2020 ◽  
Vol 12 (23) ◽  
pp. 3951
Author(s):  
Sophie Pailot-Bonnétat ◽  
Andrew J. L. Harris ◽  
Sonia Calvari ◽  
Marcello De Michele ◽  
Lucia Gurioli

Volcanic plume height is a key parameter in retrieving plume ascent and dispersal dynamics, as well as eruption intensity; all of which are crucial for assessing hazards to aircraft operations. One way to retrieve cloud height is the shadow technique. This uses shadows cast on the ground and the sun geometry to calculate cloud height. This technique has, however, not been frequently used, especially not with high-spatial resolution (30 m pixel) satellite data. On 26 October 2013, Mt Etna (Sicily, Italy) produced a lava fountain feeding an ash plume that drifted SW and through the approach routes to Catania international airport. We compared the proximal plume height time-series obtained from fixed monitoring cameras with data retrieved from a Landsat-8 Operational Land Imager image, with results being in good agreement. The application of the shadow technique to a single high-spatial resolution image allowed us to fully document the ascent and dispersion history of the plume–cloud system. We managed to do this over a distance of 60 km and a time period of 50 min, with a precision of a few seconds and vertical error on plume altitude of ±200 m. We converted height with distance to height with time using the plume dispersion velocity, defining a bent-over plume that settled to a neutral buoyancy level with distance. Potentially, the shadow technique defined here allows downwind plume height profiles and mass discharge rate time series to be built over distances of up to 260 km and periods of 24 h, depending on vent location in the image, wind speed, and direction.


2020 ◽  
Vol 12 (1) ◽  
pp. 187 ◽  
Author(s):  
Viktor Myroniuk ◽  
Mykola Kutia ◽  
Arbi J. Sarkissian ◽  
Andrii Bilous ◽  
Shuguang Liu

Satellite imagery of 25–30 m spatial resolution has been recognized as an effective tool for monitoring the spatial and temporal dynamics of forest cover at different scales. However, the precise mapping of forest cover over fragmented landscapes is complicated and requires special consideration. We have evaluated the performance of four global forest products of 25–30 m spatial resolution within three flatland subregions of Ukraine that have different forest cover patterns. We have explored the relationship between tree cover extracted from the global forest change (GFC) and relative stocking density of forest stands and justified the use of a 40% tree cover threshold for mapping forest in flatland Ukraine. In contrast, the canopy cover threshold for the analogous product Landsat tree cover continuous fields (LTCCF) is found to be 25%. Analysis of the global forest products, including discrete forest masks Global PALSAR-2/PALSAR Forest/Non-Forest Map (JAXA FNF) and GlobeLand30, has revealed a major misclassification of forested areas under severe fragmentation patterns of landscapes. The study also examined the effectiveness of forest mapping over fragmented landscapes using dense time series of Landsat images. We collected 1548 scenes of Landsat 8 Operational Land Imager (OLI) for the period 2014–2016 and composited them into cloudless mosaics for the following four seasons: yearly, summer, autumn, and April–October. The classification of images was performed in Google Earth Engine (GEE) Application Programming Interface (API) using random forest (RF) classifier. As a result, 30 m spatial resolution forest mask for flatland of Ukraine was created. The user’s and producer’s accuracy were estimated to be 0.910 ± 0.015 and 0.880 ± 0.018, respectively. The total forest area for the flatland Ukraine is 9440.5 ± 239.4 thousand hectares, which is 3% higher than official data. In general, we conclude that the Landsat-derived forest mask performs well over fragmented landscapes if forest cover of the territory is higher than 10–15%.


Sign in / Sign up

Export Citation Format

Share Document