scholarly journals Monitoring of Sugarcane Harvest in Brazil Based on Optical and SAR Data

2020 ◽  
Vol 12 (24) ◽  
pp. 4080
Author(s):  
Olena Kavats ◽  
Dmitriy Khramov ◽  
Kateryna Sergieieva ◽  
Volodymyr Vasyliev

The algorithms for determining sugarcane harvest dates are proposed; the algorithms allow the ability to monitor large areas and are based on the publicly available Synthetic Aperture Radar (SAR) and optical satellite data. Algorithm 1 uses the NDVI (Normalized Difference Vegetation Index) time series derived from Sentinel-2 data. Sharp and continuous decrease in the NDVI values is the main sign of sugarcane harvest. The NDVI time series allows the ability to determine most harvest dates. The best estimates of the sugarcane areas harvested per month have been obtained from March to August 2018 when cloudy pixel percentage is less than 45% of the image area. Algorithm 2 of the harvest monitoring uses the coherence time series derived from Sentinel-1 Single Look Complex (SLC) images and optical satellite data. Low coherence, demonstrating sharp growth upon the harvest completion, corresponds to the harvest period. The NDVI time series trends were used to refine the algorithm. It is supposed that the descending NDVI trend corresponds to harvest. The algorithms were used to identify the harvest dates and calculate the harvested areas of the reference sample of 574 sugarcane parcels with a total area of 3745 ha in the state of São Paulo, Brazil. The harvested areas identified by visual interpretation coincide with the optical-data algorithm (algorithm 1) by 97%; the coincidence with the algorithm based on SAR and optical data (algorithm 2) is 90%. The main practical applications of the algorithms are harvest monitoring and identification of the harvested fields to estimate the harvested area.

2012 ◽  
Vol 4 (5) ◽  
pp. 897 ◽  
Author(s):  
Luana Portz ◽  
Laurindo Antonio Guasselli ◽  
Iran Carlos Stalliviere Corrêa

Neste estudo foram analisadas as variações espaciais e temporais do Índice de Vegetação por Diferença Normalizada (NDVI) na lagoa do Peixe, no litoral do Rio Grande do Sul. Para alcançar o objetivo proposto foram utilizadas imagens de satélite Landsat TM5, entre os anos de 1986 e 2009, seguindo os procedimentos de elaboração de mosaico das cenas, verificação de campo, geração das imagens de NDVI, análise de dados de precipitação acumulada, geração dos mapas finais e análise qualitativa dos resultados obtidos. Os resultados obtidos com a geração de imagens de NDVI mostraram que a análise espaço-temporal associada aos dados de precipitação fornecem informações de valiosa importância sobre a dinâmica da lagoa do Peixe. A importância  do NDVI neste estudo se destaca pelo contraste existente entre água e vegetação, realçando os diferentes níveis de água sobre os bancos vegetados presentes na borda oeste da lagoa. Estes bancos são um importante controlador da dinâmica de circulação lagunar, onde em períodos de seca ocorre a compartimentação da lagoa, enquanto que em épocas de grande precipitação e acumulação de água estes bancos ficam submersos. Palavras-chave: Landsat TM, série temporal, Parque Nacional.  Spatial and Temporal Variation of NDVI in the Peixe Lagoon, RS  ABSTRACTThis paper analyzed the spatial and temporal variation of Normalized Difference Vegetation Index (NDVI) in the Peixe lagoon. To reach the purpose,  the NDVI time-series were collected from the study area between year 1986 and 2009 derived from Landsat TM5 satellite. The adopted methodology may be subdivided into the following steps: mosaic of scenes, fild verification, generation of NDVI time-series and qualitative analysis, in addition, it was complemented with rainfall analysis.  The results obtained with the NDVI time-series associated with the rainfall analysis data provide valuable information about the environmental dynamics. The importance of NDVI in this work is given by the contrast between water and vegetation, highlighting the different levels of water over vegetated banks present on the western edge of the lagoon. These banks are an important driver circulation in the lagoon, where in periods of drought occurs the partitioning of the lagoo, while in periods of high precipitation and accumulation of water they are submerged.    Keywords: Landsat TM, time-series, National Park.


2020 ◽  
Vol 12 (14) ◽  
pp. 2195 ◽  
Author(s):  
Blanka Vajsová ◽  
Dominique Fasbender ◽  
Csaba Wirnhardt ◽  
Slavko Lemajic ◽  
Wim Devos

The availability of large amounts of Sentinel-2 data has been a trigger for its increasing exploitation in various types of applications. It is, therefore, of importance to understand the limits above which these data still guarantee a meaningful outcome. This paper proposes a new method to quantify and specify restrictions of the Sentinel-2 imagery in the context of checks by monitoring, a newly introduced control approach within the European Common Agriculture Policy framework. The method consists of a comparison of normalized difference vegetation index (NDVI) time series constructed from data of different spatial resolution to estimate the performance and limits of the coarser one. Using similarity assessment of Sentinel-2 (10 m pixel size) and PlanetScope (3 m pixel size) NDVI time series, it was estimated that for 10% out of 867 fields less than 0.5 ha in size, Sentinel-2 data did not provide reliable evidence of the activity or state of the agriculture field over a given timeframe. Statistical analysis revealed that the number of clean or full pixels and the proportion of pixels lost after an application of a 5-m (1/2 pixel) negative buffer are the geospatial parameters of the field that have the highest influence on the ability of the Sentinel-2 data to qualify the field’s state in time. We specified the following limiting criteria: at least 8 full pixels inside a border and less than 60% of pixels lost. It was concluded that compliance with the criteria still assures a high level of extracted information reliability. Our research proved the promising potential, which was higher than anticipated, of Sentinel-2 data for the continuous state assessment of small fields. The method could be applied to other sensors and indicators.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4834 ◽  
Author(s):  
Pengyu Hao ◽  
Mingquan Wu ◽  
Zheng Niu ◽  
Li Wang ◽  
Yulin Zhan

Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.


2019 ◽  
Vol 11 (21) ◽  
pp. 2497
Author(s):  
Laura Recuero ◽  
Javier Litago ◽  
Jorge E. Pinzón ◽  
Margarita Huesca ◽  
Maria C. Moyano ◽  
...  

Vegetation seasonality assessment through remote sensing data is crucial to understand ecosystem responses to climatic variations and human activities at large-scales. Whereas the study of the timing of phenological events showed significant advances, their recurrence patterns at different periodicities has not been widely study, especially at global scale. In this work, we describe vegetation oscillations by a novel quantitative approach based on the spectral analysis of Normalized Difference Vegetation Index (NDVI) time series. A new set of global periodicity indicators permitted to identify different seasonal patterns regarding the intra-annual cycles (the number, amplitude, and stability) and to evaluate the existence of pluri-annual cycles, even in those regions with noisy or low NDVI. Most of vegetated land surface (93.18%) showed one intra-annual cycle whereas double and triple cycles were found in 5.58% of the land surface, mainly in tropical and arid regions along with agricultural areas. In only 1.24% of the pixels, the seasonality was not statistically significant. The highest values of amplitude and stability were found at high latitudes in the northern hemisphere whereas lowest values corresponded to tropical and arid regions, with the latter showing more pluri-annual cycles. The indicator maps compiled in this work provide highly relevant and practical information to advance in assessing global vegetation dynamics in the context of global change.


2012 ◽  
Vol 47 (9) ◽  
pp. 1270-1278 ◽  
Author(s):  
Daniel de Castro Victoria ◽  
Adriano Rolim da Paz ◽  
Alexandre Camargo Coutinho ◽  
Jude Kastens ◽  
J. Christopher Brown

The objective of this work was to evaluate a simple, semi‑automated methodology for mapping cropland areas in the state of Mato Grosso, Brazil. A Fourier transform was applied over a time series of vegetation index products from the moderate resolution imaging spectroradiometer (Modis) sensor. This procedure allows for the evaluation of the amplitude of the periodic changes in vegetation response through time and the identification of areas with strong seasonal variation related to crop production. Annual cropland masks from 2006 to 2009 were generated and municipal cropland areas were estimated through remote sensing. We observed good agreement with official statistics on planted area, especially for municipalities with more than 10% of cropland cover (R² = 0.89), but poor agreement in municipalities with less than 5% crop cover (R² = 0.41). The assessed methodology can be used for annual cropland mapping over large production areas in Brazil.


2020 ◽  
Author(s):  
Maria Castellaneta ◽  
Angelo Rita ◽  
J. Julio Camarero ◽  
Michele Colangelo ◽  
Angelo Nolè ◽  
...  

<p>Several die-off episodes related to heat weaves and drought spells have evidenced the high vulnerability of Mediterranean oak forests. These events consisted in the loss in tree vitality and manifested as growths decline, elevated crown transparency (defoliation) and rising tree mortality rate. In this context, the changes in vegetation productivity and canopy greenness may represent valuable proxies to analyze how extreme climatic events trigger forest die-off. Such changes in vegetation status may be analyzed using remote-sensing data, specifically multi-temporal spectral information. For instance, the Normalized Difference Vegetation Index (NDVI) measures changes in vegetation greenness and is a proxy of changes in leaf area index (LAI), forest aboveground biomass and productivity. In this study, we analyzed the temporal patterns of vegetation in three Mediterranean oak forests showing recent die-off in response to the 2017 severe summer drought. For this purpose, we used an open-source platform (Google Earth Engine) to extract collections of MODIS NDVI time-series from 2000 to 2019. The analysis of both NDVI trends and anomalies were used to infer differential patterns of vegetation phenology among sites comparing plots where most trees were declining and showed high defoliation (test) versus plots were most trees were considered healthy (ctrl) and showed low or no defoliation. Here we discuss: i) the likely offset in NDVI time-series between test- versus ctrl- sites; and ii) the impact of summer droughts  on NDVI.</p><p><strong>Keywords</strong>: climate change, forest vulnerability, time series, remote sensing.</p>


2011 ◽  
Vol 15 (3) ◽  
pp. 1047-1064 ◽  
Author(s):  
L. Jia ◽  
H. Shang ◽  
G. Hu ◽  
M. Menenti

Abstract. Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remotely sensed NDVI data acquired by Terra-MODIS are used to monitor the vegetation dynamic for a seven years period between 2000 and 2006. Due to cloud-contamination, atmospheric influence and different solar and viewing angles, however, the quality and consistence of time series of remotely sensed NDVI data are degraded. A Fourier Transform method – the Harmonic Analysis of Time Series (HANTS) algorithm – is used to reconstruct cloud- and noise-free NDVI time series data from the Terra-MODIS NDVI dataset. Modification is made on HANTS by adding additional parameters to deal with large data gaps in yearly time series in combination with a Temporal-Similarity-Statistics (TSS) method developed in this study to seek for initial values for the large gap periods. Secondly, the same Fourier Transform method is used to model time series of the vegetation phenology. The reconstructed cloud-free NDVI time series data are used to study the relationship between the water availability (i.e. the local precipitation and upstream water yield) and the evolution of vegetation conditions in Ejina Oasis from 2000 to 2006. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The results showed that: the previous year total runoff had a significant relationship with the vegetation growth in Ejina Oasis and that anomalies in the spring monthly runoff of the Heihe River influenced the phenology of vegetation in the entire oasis. Warmer climate expressed by the degree-days showed positive influence on the vegetation phenology in particular during drier years. The time of maximum green-up is uniform throughout the oasis during wetter years, but showed a clear S-N gradient (downstream) during drier years.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Long Zhao ◽  
Pan Zhang ◽  
Xiaoyi Ma ◽  
Zhuokun Pan

A timely and accurate understanding of land cover change has great significance in management of area resources. To explore the application of a daily normalized difference vegetation index (NDVI) time series in land cover classification, the present study used HJ-1 data to derive a daily NDVI time series by pretreatment. Different classifiers were then applied to classify the daily NDVI time series. Finally, the daily NDVI time series were classified based on multiclassifier combination. The results indicate that support vector machine (SVM), spectral angle mapper, and classification and regression tree classifiers can be used to classify daily NDVI time series, with SVM providing the optimal classification. The classifiers of K-means and Mahalanobis distance are not suited for classification because of their classification accuracy and mechanism, respectively. This study proposes a method of dimensionality reduction based on the statistical features of daily NDVI time series for classification. The method can be applied to land resource information extraction. In addition, an improved multiclassifier combination is proposed. The classification results indicate that the improved multiclassifier combination is superior to different single classifier combinations, particularly regarding subclassifiers with greater differences.


2021 ◽  
Vol 2 (23) ◽  
pp. 1-15
Author(s):  
Mwana Said Omar ◽  
◽  
Hajime Kawamukai

Desertification is major issue in arid and semi-arid lands (ASAL) with devastating environmental and socio-economic impacts. Time series analysis was applied on 19 years’ pixel-wise monthly mean Normalized Difference Vegetation Index (NDVI) data. The aim of this study was to identify a time series model that can be used to predict NDVI at the pixel level in an arid region in Kenya. The Holt-Winters and Seasonal Auto Regressive Integrated Moving Average (SARIMA) models were developed and statistical analysis was carried out using both models on the study area. We performed a grid search to optimise and determine the best hyper parameters for the models. Results from the grid search identified the Holt-Winters model as an additive model and a SARIMA model with a trend autoregressive (AR) order of 1, a trend moving average (MA) order of 1 and a seasonal MA order of 2, with both models having a seasonal period of 12 months. It was concluded that the Holt-Winters model showed the best performance for 600 ✕ 600 pixels (MAE = 0.0744, RMSE = 0.096) compared to the SARIMA model.


Sign in / Sign up

Export Citation Format

Share Document