scholarly journals Environmental Drivers of Water Use for Caatinga Woody Plant Species: Combining Remote Sensing Phenology and Sap Flow Measurements

2020 ◽  
Vol 13 (1) ◽  
pp. 75
Author(s):  
Rennan A. Paloschi ◽  
Desirée Marques Ramos ◽  
Dione J. Ventura ◽  
Rodolfo Souza ◽  
Eduardo Souza ◽  
...  

We investigated the water use of Caatinga vegetation, the largest seasonally dry forest in South America. We identified and analysed the environmental phenological drivers in woody species and their relationship with transpiration. To monitor the phenological evolution, we used remote sensing indices at different spatial and temporal scales: normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and green chromatic coordinate (GCC). To represent the phenology, we used the GCC extracted from in-situ automated digital camera images; indices calculated based on sensors included NDVI, SAVI and GCC from Sentinel-2A and B satellites images, and NDVI products MYD13Q1 and MOD13Q1 from a moderate-resolution imaging spectroradiometer (MODIS). Environmental drivers included continuously monitored rainfall, air temperature, soil moisture, net radiation, and vapour pressure deficit. To monitor soil water status and vegetation water use, we installed soil moisture sensors along three soil profiles and sap flow sensors for five plant species. Our study demonstrated that the near-surface GCC data played an important role in permitting individual monitoring of species, whereas the species’ sap flow data correlated better with NDVI, SAVI, and GCC than with species’ near-surface GCC. The wood density appeared to affect the transpiration cessation times in the dry season, given that species with the lowest wood density reach negligible values of transpiration earlier in the season than those with high woody density. Our results show that soil water availability was the main limiting factor for transpiration during more than 80% of the year, and that both the phenological response and water use are directly related to water availability when relative saturation of the soil profile fell below 0.25.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7737
Author(s):  
Tiejun Bao ◽  
Yunnuan Zheng ◽  
Ze Zhang ◽  
Heyang Sun ◽  
Ran Chao ◽  
...  

Understanding of the dynamic patterns of plant water use in a changing environment is one of foci in plant ecology, and can provide basis for the development of best practice in restoration and protection of ecosystem. We studied the water use sources of three coexisting dominant plant species Leymus chinensis, Stipa grandis and Cleistogenes squarrosa growing in both enclosed and mowing grassland in a typical steppe. The oxygen stable isotope ratios (δ18O) of soil water and stem water of these three species were determined, along with soil moisture, before and after precipitation events. The results showed that (1) mowing had no significant effect on the soil moisture and its δ18O, whereas precipitation significantly changed the soil moisture though no significant effect detected on its δ18O. (2) C. squarrosa took up water majorly from top soil layer due to its shaollow root system; L. chinensis took up relative more water from deep soil layer, and S. grandis took up water from the middle to deep soil layers. (3) L. chinensis and S. grandis in mowing grassland tended to take up more water from the upper soil layers following precipitation events, but showed no sensitive change in water source from soil profile following the precipitation in the enclosed grassland, indicating a more sensitive change of soil water sources for the two species in mowing than enclosed grassland. The differences in root morphology and precipitation distribution may partly explain the differences in their water uptake from different soil layers. Our results have important theoretical values for understanding the water competition among plants in fluctuating environment and under different land use in the typical steppe.


2021 ◽  
Author(s):  
Stefano Materia ◽  
Constantin Ardilouze ◽  
Chloé Prodhomme ◽  
Markus G. Donat ◽  
Marianna Benassi ◽  
...  

AbstractLand surface and atmosphere are interlocked by the hydrological and energy cycles and the effects of soil water-air coupling can modulate near-surface temperatures. In this work, three paired experiments were designed to evaluate impacts of different soil moisture initial and boundary conditions on summer temperatures in the Mediterranean transitional climate regime region. In this area, evapotranspiration is not limited by solar radiation, rather by soil moisture, which therefore controls the boundary layer variability. Extremely dry, extremely wet and averagely humid ground conditions are imposed to two global climate models at the beginning of the warm and dry season. Then, sensitivity experiments, where atmosphere is alternatively interactive with and forced by land surface, are launched. The initial soil state largely affects summer near-surface temperatures: dry soils contribute to warm the lower atmosphere and exacerbate heat extremes, while wet terrains suppress thermal peaks, and both effects last for several months. Land-atmosphere coupling proves to be a fundamental ingredient to modulate the boundary layer state, through the partition between latent and sensible heat fluxes. In the coupled runs, early season heat waves are sustained by interactive dry soils, which respond to hot weather conditions with increased evaporative demand, resulting in longer-lasting extreme temperatures. On the other hand, when wet conditions are prescribed across the season, the occurrence of hot days is suppressed. The land surface prescribed by climatological precipitation forcing causes a temperature drop throughout the months, due to sustained evaporation of surface soil water. Results have implications for seasonal forecasts on both rain-fed and irrigated continental regions in transitional climate zones.


2017 ◽  
Author(s):  
Alessandro Anav ◽  
Chiara Proietti ◽  
Laurent Menut ◽  
Stefano Carnicelli ◽  
Alessandra De Marco ◽  
...  

Abstract. Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability was often neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite through stomata plants remove a large amount of atmospheric compounds from the lower troposphere. The main aim of this study is to evaluate the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone; following the main assumption that roots maximize water uptake, i.e. they adsorb water at different soil depths depending on the water availability, we improve the dry deposition scheme within the chemistry transport model CHIMERE. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 Tg O3, while using a dynamic layer that ensures plants to maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition (~ 7.7 Tg O3). Despite dry deposition occurs from top of canopy to ground level, it affects the concentration of gases remaining into the lower atmosphere with a significant impact on ozone concentration (up to 4 ppb) extending from the surface to the upper troposphere (up to 650 hPa). Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy) as they have significant implications on concentration of gases in the lower troposphere.


1995 ◽  
Vol 75 (1) ◽  
pp. 99-103 ◽  
Author(s):  
C. S. Tan ◽  
B. R. Buttery

Using heat-balance stem flow gauges, we were able to measure directly and continuously the sap flow rates in two pairs of soybean [Glycine max (L.) Merr.] isolines differing in stomatal frequency. Plants with high stomatal frequency transpired significantly more water than the low stomatal frequency plants at high soil moisture levels. Under low soil moisture levels, the water use rate decreased greatly for the high stomatal frequency plants. Plants with low stomatal frequency were able to maintain greater sap flow rates than those with high stomatal frequency. Higher leaf temperatures associated with the low stomatal frequency plants were likely due to lower transpiration rates which reduced evaporative cooling especially under well-watered conditions. Key words:Glycine max (L.) Merr., transpiration, water deficits


2009 ◽  
Vol 6 (5) ◽  
pp. 6425-6454
Author(s):  
H. Stephen ◽  
S. Ahmad ◽  
T. C. Piechota ◽  
C. Tang

Abstract. The Tropical Rainfall Measuring Mission (TRMM) carries aboard the Precipitation Radar (TRMMPR) that measures the backscatter (σ°) of the surface. σ° is sensitive to surface soil moisture and vegetation conditions. Due to sparse vegetation in arid and semi-arid regions, TRMMPR σ° primarily depends on the soil water content. In this study we relate TRMMPR σ° measurements to soil water content (ms) in Lower Colorado River Basin (LCRB). σ° dependence on ms is studied for different vegetation greenness values determined through Normalized Difference Vegetation Index (NDVI). A new model of σ° that couples incidence angle, ms, and NDVI is used to derive parameters and retrieve soil water content. The calibration and validation of this model are performed using simulated and measured ms data. Simulated ms is estimated using Variable Infiltration Capacity (VIC) model whereas measured ms is acquired from ground measuring stations in Walnut Gulch Experimental Watershed (WGEW). σ° model is calibrated using VIC and WGEW ms data during 1998 and the calibrated model is used to derive ms during later years. The temporal trends of derived ms are consistent with VIC and WGEW ms data with correlation coefficient (R) of 0.89 and 0.74, respectively. Derived ms is also consistent with the measured precipitation data with R=0.76. The gridded VIC data is used to calibrate the model at each grid point in LCRB and spatial maps of the model parameters are prepared. The model parameters are spatially coherent with the general regional topography in LCRB. TRMMPR σ° derived soil moisture maps during May (dry) and August (wet) 1999 are spatially similar to VIC estimates with correlation 0.67 and 0.76, respectively. This research provides new insights into Ku-band σ° dependence on soil water content in the arid regions.


2021 ◽  
pp. 1-12
Author(s):  
R. Dietrich ◽  
F.W. Bell ◽  
M. Anand

Given the large contribution of forests to terrestrial carbon storage, there is a need to resolve the environmental and physiological drivers of tree-level response to rising atmospheric CO2. This study examines how site-level soil moisture influences growth and intrinsic water-use efficiency in sugar maple (Acer saccharum Marsh.). We construct tree-ring, δ18O, and Δ13C chronologies for trees across a soil moisture gradient in Ontario, Canada, and employ a structural equation modelling approach to ascertain their climatic, ontogenetic, and environmental drivers. Our results support previous evidence for the presence of strong developmental effects in tree-ring isotopic chronologies — in the range of −4.7‰ for Δ13C and +0.8‰ for δ18O — across the tree life span. Additionally, we show that the physiological response of sugar maple to increasing atmospheric CO2 depends on site-level soil moisture variability, with trees only in relatively wet plots exhibiting temporal increases in intrinsic water-use efficiency. These results suggest that trees in wet and mesic plots have experienced temporal increases in stomatal conductance and photosynthetic capacity, whereas trees in dry plots have experienced decreases in photosynthetic capacity. This study is the first to examine sugar maple physiology using a dendroisotopic approach and broadens our understanding of carbon–water interactions in temperate forests.


2020 ◽  
Vol 12 (8) ◽  
pp. 1242 ◽  
Author(s):  
Sumanta Chatterjee ◽  
Jingyi Huang ◽  
Alfred E. Hartemink

Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter data from 2016 to 2018 and ancillary data. Empirical machine learning models were established between soil water content measured at the USCRN stations with Sentinel-1 data from 2016 to 2017, the National Land Cover Dataset, terrain parameters, and Polaris soil data, and were evaluated in 2018 at the same USCRN stations. The Cubist model performed better than the multiple linear regression (MLR) and Random Forest (RF) model (R2 = 0.68 and RMSE = 0.06 m3 m-3 for validation). The Cubist model performed best in Shrub/Scrub, followed by Herbaceous and Cultivated Crops but poorly in Hay/Pasture. The success of SSM retrieval was mostly attributed to soil properties, followed by Sentinel-1 backscatter data, terrain parameters, and land cover. The approach shows the potential for retrieving SSM using Sentinel-1 data in a combination of high-resolution ancillary data across the conterminous United States (CONUS). Future work is required to improve the model performance by including more SSM network measurements, assimilating Sentinel-1 data with other microwave, optical and thermal remote sensing products. There is also a need to improve the spatial resolution and accuracy of land surface parameter products (e.g., soil properties and terrain parameters) at the regional and global scales.


2014 ◽  
Vol 11 (16) ◽  
pp. 4305-4320 ◽  
Author(s):  
S. T. Klosterman ◽  
K. Hufkens ◽  
J. M. Gray ◽  
E. Melaas ◽  
O. Sonnentag ◽  
...  

Abstract. Plant phenology regulates ecosystem services at local and global scales and is a sensitive indicator of global change. Estimates of phenophase transition dates, such as the start of spring or end of fall, can be derived from sensor-based time series, but must be interpreted in terms of biologically relevant events. We use the PhenoCam archive of digital repeat photography to implement a consistent protocol for visual assessment of canopy phenology at 13 temperate deciduous forest sites throughout eastern North America, and to perform digital image analysis for time-series-based estimation of phenophase transition dates. We then compare these results to remote sensing metrics of phenophase transition dates derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) sensors. We present a new type of curve fit that uses a generalized sigmoid function to estimate phenology dates, and we quantify the statistical uncertainty of phenophase transition dates estimated using this method. Results show that the generalized sigmoid provides estimates of dates with less statistical uncertainty than other curve-fitting methods. Additionally, we find that dates derived from analysis of high-frequency PhenoCam imagery have smaller uncertainties than satellite remote sensing metrics of phenology, and that dates derived from the remotely sensed enhanced vegetation index (EVI) have smaller uncertainty than those derived from the normalized difference vegetation index (NDVI). Near-surface time-series estimates for the start of spring are found to closely match estimates derived from visual assessment of leaf-out, as well as satellite remote-sensing-derived estimates of the start of spring. However late spring and fall phenology metrics exhibit larger differences between near-surface and remote scales. Differences in late spring phenology between near-surface and remote scales are found to correlate with a landscape metric of deciduous forest cover. These results quantify the effect of landscape heterogeneity when aggregating to the coarser spatial scales of remote sensing, and demonstrate the importance of accurate curve fitting and vegetation index selection when analyzing and interpreting phenology time series.


Sign in / Sign up

Export Citation Format

Share Document