scholarly journals Estimating Water Vapor Using Signals from Microwave Links below 25 GHz

2021 ◽  
Vol 13 (8) ◽  
pp. 1409
Author(s):  
Kun Song ◽  
Xichuan Liu ◽  
Taichang Gao ◽  
Peng Zhang

Water vapor is a key element in both the greenhouse effect and the water cycle. However, water vapor has not been well studied due to the limitations of conventional monitoring instruments. Recently, estimating rain rate by the rain-induced attenuation of commercial microwave links (MLs) has been proven to be a feasible method. Similar to rainfall, water vapor also attenuates the energy of MLs. Thus, MLs also have the potential of estimating water vapor. This study proposes a method to estimate water vapor density by using the received signal level (RSL) of MLs at 15, 18, and 23 GHz, which is the first attempt to estimate water vapor by MLs below 20 GHz. This method trains a sensing model with prior RSL data and water vapor density by the support vector machine, and the model can directly estimate the water vapor density from the RSLs without preprocessing. The results show that the measurement resolution of the proposed method is less than 1 g/m3. The correlation coefficients between automatic weather stations and MLs range from 0.72 to 0.81, and the root mean square errors range from 1.57 to 2.31 g/m3. With the large availability of signal measurements from communications operators, this method has the potential of providing refined data on water vapor density, which can contribute to research on the atmospheric boundary layer and numerical weather forecasting.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Biyan Chen ◽  
Wujiao Dai ◽  
Zhizhao Liu ◽  
Lixin Wu ◽  
Pengfei Xia

Satellite remote sensing of the atmospheric water vapor distribution over the oceans is essential for both weather and climate studies. Satellite onboard microwave radiometer is capable of measuring the water vapor over the oceans under all weather conditions. This study assessed the accuracies of precipitable water vapor (PWV) products over the south and east China seas derived from the Global Precipitation Measurement Microwave Imager (GMI), using radiosonde and GNSS (Global Navigation Satellite System) located at islands and coasts as truth. PWV measurements from 14 radiosonde and 5 GNSS stations over the period of 2014–2017 were included in the assessments. Results show that the GMI 3-day composites have an accuracy of better than 5 mm. A further evaluation shows that RMS (root mean square) errors of the GMI 3-day composites vary greatly in the range of 3∼14 mm at different radiosonde/GNSS sites. GMI 3-day composites show very good agreements with radiosonde and GNSS measured PWVs with correlation coefficients of 0.896 and 0.970, respectively. The application of GMI products demonstrates that it is possible to reveal the weather front, moisture advection, transportation, and convergence during the Meiyu rainfall. This work indicates that the GMI PWV products can contribute to various studies such as climate change, hydrologic cycle, and weather forecasting.


2017 ◽  
Vol 35 (2) ◽  
pp. 311-323 ◽  
Author(s):  
Nan Ding ◽  
Shubi Zhang ◽  
Qiuzhao Zhang

Abstract. Water vapor is the basic parameter used to describe atmospheric conditions. It is rarely contained in the atmosphere during the water cycle, but it is the most active element in rapid space–time changes. Measuring and monitoring the distribution and quantity of water vapor is a necessary task. GPS tomography is a powerful means of providing high spatiotemporal resolution of water vapor density. In this paper, a spatial structure model of a humidity field is constructed using voxel nodes, and new parameterizations for acquiring data about water vapor in the troposphere via GPS are proposed based on inverse distance weighted (IDW) interpolation. Unlike the density of water vapor that is constant within a voxel, the density at a certain point is determined by IDW interpolation. This algorithm avoids the use of horizontal constraints to smooth voxels that are not crossed by satellite rays. A prime number decomposition (PND) access order scheme is introduced to minimize correlation between slant wet delay (SWD) observations. Four experimental schemes for GPS tomography are carried out in dry weather from 2 to 8 August 2015 and rainy days from 9 to 15 August 2015. Using 14 days of data from the Hong Kong Satellite Positioning Reference Station Network (SatRef), the results indicate that water vapor density derived from 4-node methods is more robust than that derived from that of 8 nodes or 12 nodes, or that derived from constant refractivity schemes and the new method has better performance under stable weather conditions than unstable weather (e.g., rainy days). The results also indicate that an excessive number of interpolations in each layer reduce accuracy. However, the accuracy of the tomography results is gradually reduced with increases in altitude below 7000 m. Moreover, in the case of altitudes between 7000 m and the upper boundary layer, the accuracy can be improved by a boundary constraint.


2011 ◽  
Vol 12 (4) ◽  
pp. 650-662
Author(s):  
Paul A. Dirmeyer ◽  
Timothy DelSole ◽  
Mei Zhao

Abstract Empirical correction is applied to wind, temperature, and soil moisture fields in a climate model to assess its impact on simulation of the water cycle during boreal summer. The empirical correction method is based on the biases in model forecasts only as a function of the time of year. Corrections are applied to the prognostic equations as an extra nudging term. Mean fields of evaporation, precipitation, moisture transport, and recycling ratio are all improved, even though humidity fields were not corrected. Simulation of the patterns of surface evaporation supplying rainfall at locations over land is also improved for most locations. There is also improvement in the simulation of evaporation and possibly rainfall, as measured by anomaly correlation coefficients and root-mean-square errors of the time series of monthly anomalies. However, monthly anomalies of other water cycle fields such as moisture transport and recycling ratio were not improved. Like any statistical adjustment, empirical correction does not address the cause of model errors, but it does provide a net improvement to the simulation of the water cycle. It can, however, be used to diagnose the sources of error in the model. Since corrections are only applied to prognostic variables, shortcomings due to physical parameterizations in the model are not remedied.


2021 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Binbin Wang ◽  
Lei Zhong ◽  
Weiqiang Ma ◽  
...  

Abstract. Terrestrial actual evapotranspiration (ETa) is a key parameter controlling the land-atmosphere interaction processes and the water cycle. However, the spatial distribution and temporal changes of ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Validation against data from six eddy-covariance monitoring sites yielded a root mean square errors ranging from 9.3 to 14.5 mm mo−1, and correlation coefficients exceeding 0.9. The domain mean of annual ETa on the TP decreased slightly (−1.45 mm yr−1, p 


2021 ◽  
Vol 13 (7) ◽  
pp. 3513-3524
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Binbin Wang ◽  
Lei Zhong ◽  
Weiqiang Ma ◽  
...  

Abstract. Actual terrestrial evapotranspiration (ETa) is a key parameter controlling land–atmosphere interaction processes and water cycle. However, spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Validation against data from six eddy-covariance monitoring sites yielded root-mean-square errors ranging from 9.3 to 14.5 mm per month and correlation coefficients exceeding 0.9. The domain mean of annual ETa on the TP decreased slightly (−1.45 mm yr−1, p<0.05) from 2001 to 2018. The annual ETa increased significantly at a rate of 2.62 mm yr−1 (p<0.05) in the eastern sector of the TP (long >90∘ E) but decreased significantly at a rate of −5.52 mm yr−1 (p<0.05) in the western sector of the TP (long <90∘ E). In addition, the decreases in annual ETa were pronounced in the spring and summer seasons, while almost no trends were detected in the autumn and winter seasons. The mean annual ETa during 2001–2018 and over the whole TP was 496±23 mm. Thus, the total evapotranspiration from the terrestrial surface of the TP was 1238.3±57.6 km3 yr−1. The estimated ETa product presented in this study is useful for an improved understanding of changes in energy and water cycle on the TP. The dataset is freely available at the Science Data Bank (https://doi.org/10.11922/sciencedb.t00000.00010; Han et al., 2020b) and at the National Tibetan Plateau Data Center (https://doi.org/10.11888/Hydro.tpdc.270995, Han et al., 2020a).


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3065
Author(s):  
Ernest Kwesi Ofori ◽  
Shuaijie Wang ◽  
Tanvi Bhatt

Inertial sensors (IS) enable the kinematic analysis of human motion with fewer logistical limitations than the silver standard optoelectronic motion capture (MOCAP) system. However, there are no data on the validity of IS for perturbation training and during the performance of dance. The aim of this present study was to determine the concurrent validity of IS in the analysis of kinematic data during slip and trip-like perturbations and during the performance of dance. Seven IS and the MOCAP system were simultaneously used to capture the reactive response and dance movements of fifteen healthy young participants (Age: 18–35 years). Bland Altman (BA) plots, root mean square errors (RMSE), Pearson’s correlation coefficients (R), and intraclass correlation coefficients (ICC) were used to compare kinematic variables of interest between the two systems for absolute equivalency and accuracy. Limits of agreements (LOA) of the BA plots ranged from −0.23 to 0.56 and −0.21 to 0.43 for slip and trip stability variables, respectively. The RMSE for slip and trip stabilities were from 0.11 to 0.20 and 0.11 to 0.16, respectively. For the joint mobility in dance, LOA varied from −6.98–18.54, while RMSE ranged from 1.90 to 13.06. Comparison of IS and optoelectronic MOCAP system for reactive balance and body segmental kinematics revealed that R varied from 0.59 to 0.81 and from 0.47 to 0.85 while ICC was from 0.50 to 0.72 and 0.45 to 0.84 respectively for slip–trip perturbations and dance. Results of moderate to high concurrent validity of IS and MOCAP systems. These results were consistent with results from similar studies. This suggests that IS are valid tools to quantitatively analyze reactive balance and mobility kinematics during slip–trip perturbation and the performance of dance at any location outside, including the laboratory, clinical and home settings.


2021 ◽  
Vol 13 (5) ◽  
pp. 1004
Author(s):  
Song Li ◽  
Tianhe Xu ◽  
Nan Jiang ◽  
Honglei Yang ◽  
Shuaimin Wang ◽  
...  

The meteorological reanalysis data has been widely applied to derive zenith tropospheric delay (ZTD) with a high spatial and temporal resolution. With the rapid development of artificial intelligence, machine learning also begins as a high-efficiency tool to be employed in modeling and predicting ZTD. In this paper, we develop three new regional ZTD models based on the least squares support vector machine (LSSVM), using both the International GNSS Service (IGS)-ZTD products and European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data over Europe throughout 2018. Among them, the ERA5 data is extended to ERA5S-ZTD and ERA5P-ZTD as the background data by the model method and integral method, respectively. Depending on different background data, three schemes are designed to construct ZTD models based on the LSSVM algorithm, including the without background data, with the ERA5S-ZTD, and with the ERA5P-ZTD. To investigate the advantage and feasibility of the proposed ZTD models, we evaluate the accuracy of two background data and three schemes by segmental comparison with the IGS-ZTD of 85 IGS stations in Europe. The results show that the overall average Root Mean Square Errors (RMSE) value of all sites is 30.1 mm for the ERA5S-ZTD, and 10.7 mm for the ERA5P-ZTD. The overall average RMSE is 25.8 mm, 22.9 mm, and 9 mm for the three schemes, respectively. Moreover, the overall improvement rate is 19.1% and 1.6% for the ZTD model with ERA5S-ZTD and ERA5P-ZTD, respectively. In order to explore the reason of the lower improvement for the ZTD model with ERA5P-ZTD, the loop verification is performed by estimating the ZTD values of each available IGS station. In actuality, the monthly improvement rate of estimated ZTD is positive for most stations, and the biggest improvement rate can even reach about 40%. The negative rate mainly comes from specific stations, these stations are located on the edge of the region, near the coast, as well as the lower similarity between the individual verified station and training stations.


Author(s):  
Osama Siddig ◽  
Salaheldin Elkatatny

AbstractRock mechanical properties play a crucial role in fracturing design, wellbore stability and in situ stresses estimation. Conventionally, there are two ways to estimate Young’s modulus, either by conducting compressional tests on core plug samples or by calculating it from well log parameters. The first method is costly, time-consuming and does not provide a continuous profile. In contrast, the second method provides a continuous profile, however, it requires the availability of acoustic velocities and usually gives estimations that differ from the experimental ones. In this paper, a different approach is proposed based on the drilling operational data such as weight on bit and penetration rate. To investigate this approach, two machine learning techniques were used, artificial neural network (ANN) and support vector machine (SVM). A total of 2288 data points were employed to develop the model, while another 1667 hidden data points were used later to validate the built models. These data cover different types of formations carbonate, sandstone and shale. The two methods used yielded a good match between the measured and predicted Young’s modulus with correlation coefficients above 0.90, and average absolute percentage errors were less than 15%. For instance, the correlation coefficients for ANN ranged between 0.92 and 0.97 for the training and testing data, respectively. A new empirical correlation was developed based on the optimized ANN model that can be used with different datasets. According to these results, the estimation of elastic moduli from drilling parameters is promising and this approach could be investigated for other rock mechanical parameters.


2013 ◽  
Vol 13 (14) ◽  
pp. 6877-6886 ◽  
Author(s):  
D. Scheiben ◽  
A. Schanz ◽  
B. Tschanz ◽  
N. Kämpfer

Abstract. In this paper, we compare the diurnal variations in middle-atmospheric water vapor as measured by two ground-based microwave radiometers in the Alpine region near Bern, Switzerland. The observational data set is also compared to data from the chemistry–climate model WACCM. Due to the small diurnal variations of usually less than 1%, averages over extended time periods are required. Therefore, two time periods of five months each, December to April and June to October, were taken for the comparison. The diurnal variations from the observational data agree well with each other in amplitude and phase. The linear correlation coefficients range from 0.8 in the upper stratosphere to 0.5 in the upper mesosphere. The observed diurnal variability is significant at all pressure levels within the sensitivity of the instruments. Comparing our observations with WACCM, we find that the agreement of the phase of the diurnal cycle between observations and model is better from December to April than from June to October. The amplitudes of the diurnal variations for both time periods increase with altitude in WACCM, but remain approximately constant at 0.05 ppm in the observations. The WACCM data are used to separate the processes that lead to diurnal variations in middle-atmospheric water vapor above Bern. The dominating processes were found to be meridional advection below 0.1 hPa, vertical advection between 0.1 and 0.02 hPa and (photo-)chemistry above 0.02 hPa. The contribution of zonal advection is small. The highest diurnal variations in water vapor as seen in the WACCM data are found in the mesopause region during the time period from June to October with diurnal amplitudes of 0.2 ppm (approximately 5% in relative units).


Sign in / Sign up

Export Citation Format

Share Document