scholarly journals Making Use of 3D Models for Plant Physiognomic Analysis: A Review

2021 ◽  
Vol 13 (11) ◽  
pp. 2232
Author(s):  
Abhipray Paturkar ◽  
Gourab Sen Sen Gupta ◽  
Donald Bailey

Use of 3D sensors in plant phenotyping has increased in the last few years. Various image acquisition, 3D representations, 3D model processing and analysis techniques exist to help the researchers. However, a review of approaches, algorithms, and techniques used for 3D plant physiognomic analysis is lacking. In this paper, we investigate the techniques and algorithms used at various stages of processing and analysing 3D models of plants, and identify their current limiting factors. This review will serve potential users as well as new researchers in this field. The focus is on exploring studies monitoring the plant growth of single plants or small scale canopies as opposed to large scale monitoring in the field.

2018 ◽  
Author(s):  
Breght Vandenberghe ◽  
Stephen Depuydt ◽  
Arnout Van Messem

Machine vision technology is moving more and more towards a three-dimensional approach, and plant phenotyping is following this trend. However, despite its potential, the complexity of the analysis of 3D representations has been the main bottleneck hindering the wider deployment of 3D plant phenotyping. In this review we provide an overview of typical steps for the processing and analysis of 3D representations of plants, to offer potential users of 3D phenotyping a first gateway into its application, and to stimulate its further development. We focus on plant phenotyping applications where the goal is to measure characteristics of single plants or crop canopies on a small scale in research settings, as opposed to large scale crop monitoring in the field.


2013 ◽  
Vol 724 ◽  
pp. 1-4 ◽  
Author(s):  
Bruce R. Sutherland

AbstractOne way that large-scale oceanic internal waves transfer their energy to small-scale mixing is through parametric subharmonic instability (PSI). But there is a disconnect between theory, which assumes the waves are periodic in space and time, and reality, in which waves are transient and localized. The innovative laboratory experiments and analysis techniques of Bourget et al. (J. Fluid Mech., vol. 723, 2013, pp. 1–20) show that theory can be applied to interpret the generation of subharmonic disturbances from a quasi-monochromatic wave beam. Their methodology and results open up new avenues of investigation into PSI through experiments, simulations and observations.


2020 ◽  
Author(s):  
Anders Solheim ◽  
Amy Oen ◽  
Bjørn Kalsnes ◽  
Vittoria Capobianco

<p>Nature-based solutions (NBS) are "inspired and supported by nature. They are cost-effective and simultaneously provide environmental, social and economic benefits and help build resilience" (EU, 2015). The main objective of the H2020 project PHUSICOS is to demonstrate the implementation of nature-based solutions to reduce the risk of extreme weather events in vulnerable areas such as rural mountain landscapes. To meet this aim, three large-scale demonstration sites have been selected in Tuscany, Italy, The Pyrenees, France/Spain and the Gudbrandsdalen Valley, Norway as representative of hydro-meteorological hazards, vegetation, topography and infrastructure throughout rural and mountainous regions in Europe. Additionally, two small-scale concept cases are established in Kaunertal Valley, Austria and the Isar River Basin, Germany to test specific challenges. This presentation focuses on the three large scale demonstrator sites.</p><p>PHUSICOS started in 2018 and over the four-year period each demonstrator site shall propose and implement at least three NBS projects each. At present 9 NBSs have been proposed.</p><p>The Italian proposals, organized by Autorità di Bacino Distrettuale, ADBS, relate to the pollution, drought, erosion, and land degradation around lake Massaciuccoli in Tuscany. The measures are related to reduce the runoff from farmland to the channels and the lake, as well as to reduce the high salinity of the lake. Proposed measures include feeding water from the Serchio River to the lake, and the establishment of vegetation buffer strips between the farmed land and the channels and retention basins.</p><p>In the Pyrenees, the proposed measures, organized by Consorcio de la Comunidad de Trabajo de los Pirineos, CTP, are to reduce risk from several hydrometeorological hazards; flooding and torrents, erosion, snow avalanches and rock fall. The measures include afforestation to reduce snow avalanche release, modification of river banks and beds to reduce torrent hazard, revegetation to reduce erosive rock fall from till deposits, and the use of local wood to prevent release of rock fall as well as forest management to reduce block velocity and runout.</p><p>The Norwegian NBS proposal, organized by Oppland County Administration, is to reduce flooding, erosion, and problematic redeposition in a confluence zone between a tributary and the main river. The measure is a green, receded barrier, to provide flooding space for the river and secure adequate conditions for the riparian vegetation and several red-list species.</p><p>PHUSICOS aims to involve stakeholders in Living Lab processes at the demonstration sites and has succeeded to different degrees depending on the starting point of the NBSs towards their implementation. Baseline surveys of key monitoring parameters are also being performed for selected measures at the three sites.</p><p>The main challenges include getting the most representative stakeholders involved in the Living Lab process, and, perhaps most important, adhering to the local laws and regulations, including environmental and tendering processes. These local regulations are already delaying the progress towards implementation of the measures within the time frame of PHUSICOS. The presentation will elaborate on the selected NBS, their co-benefits and on the challenges, which may be limiting factors for such projects.</p>


Author(s):  
D. Kitsakis ◽  
E. Tsiliakou ◽  
T. Labropoulos ◽  
E. Dimopoulou

Over the last decades 3D modelling has been a fast growing field in Geographic Information Science, extensively applied in various domains including reconstruction and visualization of cultural heritage, especially monuments and traditional settlements. Technological advances in computer graphics, allow for modelling of complex 3D objects achieving high precision and accuracy. Procedural modelling is an effective tool and a relatively novel method, based on algorithmic modelling concept. It is utilized for the generation of accurate 3D models and composite facade textures from sets of rules which are called Computer Generated Architecture grammars (CGA grammars), defining the objects’ detailed geometry, rather than altering or editing the model manually. In this paper, procedural modelling tools have been exploited to generate the 3D model of a traditional settlement in the region of Central Zagori in Greece. The detailed geometries of 3D models derived from the application of shape grammars on selected footprints, and the process resulted in a final 3D model, optimally describing the built environment of Central Zagori, in three levels of Detail (LoD). The final 3D scene was exported and published as 3D web-scene which can be viewed with 3D CityEngine viewer, giving a walkthrough the whole model, same as in virtual reality or game environments. This research work addresses issues regarding textures' precision, LoD for 3D objects and interactive visualization within one 3D scene, as well as the effectiveness of large scale modelling, along with the benefits and drawbacks that derive from procedural modelling techniques in the field of cultural heritage and more specifically on 3D modelling of traditional settlements.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Łukasz Halik ◽  
Maciej Smaczyński ◽  
Beata Medyńska-Gulij

<p><strong>Abstract.</strong> The attempt to work out the geomatic workflow of transforming low-level aerial imagery obtained with unmanned aerial vehicles (UAV) into a digital terrain model (DTM) and implementing the 3D model into the augmented reality (AR) system constitutes the main problem discussed in this article. The authors suggest the following workflow demonstrated in Fig. 1.</p><p>The series of pictures obtained by means of UAV equipped with a HD camera was the source of data to be worked out in the final stage of the geovisualization. The series was then processed and a few point clouds were isolated from it, being later used for generating test 3D models.</p><p>The practical aim of the research conducted was to work out, on the basis of the UAV pictures, the 3D geovisualization in the AR system that would depict the heap of the natural aggregate of irregular shape. The subsequent aim was to verify the accuracy of the produced 3D model. The object of the study was a natural aggregate heap of irregular shape and denivelations up to 11 meters.</p><p>Based on the obtained photos, three point clouds (varying in the level of detail) were generated for the 20&amp;thinsp;000-meter-square area. The several-centimeter differences observed between the control points in the field and the ones from the model might corroborate the usefulness of the described algorithm for creating large-scale DTMs for engineering purposes. The method of transformation of pictures into the point cloud that was subsequently transformed into 3D models was employed in the research, resulting in the scheme depicting the technological sequence of the creation of 3D geovisualization worked out in the AR system. The geovisualization can be viewed thanks to a specially worked out mobile application for smartphones.</p>


2012 ◽  
Vol 610-613 ◽  
pp. 3724-3731
Author(s):  
Hua Cheng Dou ◽  
Liang Yong Cheng ◽  
Shi Jun Deng ◽  
Ling Wang ◽  
Xiao Hui Han

This paper presents the simplification method of 3D model by triangle-deletion and single piece generated by 3D Ground. The method achieve automated batch build LOD (level of detail models) library, an effective solution to high-precision mass application of large-scale 3D model and successfully applied to 3D digital city of Tianjin network system construction. The method of 3D digital city construction and application of large amounts of data has important reference value and promotional value.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Desty Sinta Anggraini ◽  
Kristi Wardani

The purpose of this study was to find out (1) developing a thematic Worksheet (LKPD) for PPKn content for grade IV elementary school, (2) knowing the feasibility of learning products made. This research includes development research. The data collection techniques used were observation and documentation. The data analysis techniques used was qualitative data analysis and quantitative data analysis. The results showed that LKPD products were suitable for use. LKPD teaching materials obtain a feasibility percentage from material experts 83.5% with very feasible criteria, the results of the feasibility percentage from thematic experts 91.3% with very feasible criteria, the results of the feasibility percentage of class teachers 86% with criteria very feasible, and the results of feasibility percentage from the principal 84.5% with very decent criteria. The response of students from small-scale trials obtained a percentage of 90.13% with very feasible criteria, while a large scale obtained an average score of 80.5 with very good criteria. The conclusion is that the Student Worksheet (LKPD) in Thematic Contents of Pancasila and Civic Education in Class IV of Sokowaten Baru Elementary School in Yogyakarta Academic Year 2018/2019 is very feasible to use as teaching material and learning.


2000 ◽  
Vol 45 (4) ◽  
pp. 396-398
Author(s):  
Roger Smith
Keyword(s):  

2020 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Evi Rahmawati ◽  
Irnin Agustina Dwi Astuti ◽  
N Nurhayati

IPA Integrated is a place for students to study themselves and the surrounding environment applied in daily life. Integrated IPA Learning provides a direct experience to students through the use and development of scientific skills and attitudes. The importance of integrated IPA requires to pack learning well, integrated IPA integration with the preparation of modules combined with learning strategy can maximize the learning process in school. In SMP 209 Jakarta, the value of the integrated IPA is obtained from 34 students there are 10 students completed and 24 students are not complete because they get the value below the KKM of 68. This research is a development study with the development model of ADDIE (Analysis, Design, Development, Implementation, and Evaluation). The use of KPS-based integrated IPA modules (Science Process sSkills) on the theme of rainbow phenomenon obtained by media expert validation results with an average score of 84.38%, average material expert 82.18%, average linguist 75.37%. So the average of all aspects obtained by 80.55% is worth using and tested to students. The results of the teacher response obtained 88.69% value with excellent criteria. Student responses on a small scale acquired an average score of 85.19% with highly agreed criteria and on the large-scale student response gained a yield of 86.44% with very agreed criteria. So the module can be concluded receiving a good response by the teacher and students.


2019 ◽  
Vol 61 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Loretta Lees

Abstract Gentrification is no-longer, if it ever was, a small scale process of urban transformation. Gentrification globally is more often practised as large scale urban redevelopment. It is state-led or state-induced. The results are clear – the displacement and disenfranchisement of low income groups in favour of wealthier in-movers. So, why has gentrification come to dominate policy making worldwide and what can be done about it?


Sign in / Sign up

Export Citation Format

Share Document