scholarly journals Evaluation of the MODIS (C6) Daily Albedo Products for Livingston Island, Antarctic

2021 ◽  
Vol 13 (12) ◽  
pp. 2357
Author(s):  
Alejandro Corbea-Pérez ◽  
Javier F. Calleja ◽  
Carmen Recondo ◽  
Susana Fernández

Although extensive research of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo data is available on the Greenland Ice Sheet, there is a lack of studies evaluating MODIS albedo products over Antarctica. In this paper, MOD10A1, MYD10A1, and MCD43 (C6) daily albedo products were compared with the in situ albedo data on Livingston Island, South Shetland Islands (SSI), Antarctica, from 2006 to 2015, for both all-sky and clear-sky conditions, and for the entire study period and only the southern summer months. This is the first evaluation in which MYD10A1 and MCD43 are also included, which can be used to improve the accuracy of the snow BRDF/albedo modeling. The best correlation was obtained with MOD10A1 in clear-sky conditions (r = 0.7 and RMSE = 0.042). With MCD43, only data from the backup algorithm could be used, so the correlations obtained were lower (r = 0.6). However, it was found that there was no significant difference between the values obtained for all-sky and for clear-sky data. In addition, the MODIS products were found to describe the in situ data trend, with increasing albedo values in the range between 0.04 decade−1 and 0.16 decade−1. We conclude that MODIS daily albedo products can be applied to study the albedo in the study area.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3569
Author(s):  
Calleja ◽  
Corbea-Pérez ◽  
Fernández ◽  
Recondo ◽  
Peón ◽  
...  

The aim of this work is to investigate whether snow albedo seasonality and trend under all sky conditions at Johnsons Glacier (Livingston Island, Antarctica) can be tracked using the Moderate Resolution Imaging Spectroradiometer (MODIS) snow albedo daily product MOD10A1. The time span is from December 2006 to February 2015. As the MOD10A1 snow albedo product has never been used in Antarctica before, we also assess the performance for the MOD10A1 cloud mask. The motivation for this work is the need for a description of snow albedo under all sky conditions (including overcast days) using satellite data with mid-spatial resolution. In-situ albedo was filtered with a 5-day windowed moving average, while the MOD10A1 data were filtered using a maximum filter. Both in-situ and MOD10A1 data follow an exponential decay during the melting season, with a maximum decay of 0.049/0.094 day−1 (in-situ/MOD10A1) for the 2006–2007 season and a minimum of 0.016/0.016 day−1 for the 2009–2010 season. The duration of the decay varies from 85 days (2007–2008) to 167 days (2013–2014). Regarding the albedo trend, both data sets exhibit a slight increase of albedo, which may be explained by an increase of snowfall along with a decrease of snowmelt in the study area. Annual albedo increases of 0.2% and 0.7% are obtained for in-situ and MOD10A1 data, respectively, which amount to respective increases of 2% and 6% in the period 2006–2015. We conclude that MOD10A1 can be used to characterize snow albedo seasonality and trend on Livingston Island when filtered with a maximum filter.


2016 ◽  
Vol 17 (7) ◽  
pp. 1999-2011 ◽  
Author(s):  
Steven D. Miller ◽  
Fang Wang ◽  
Ann B. Burgess ◽  
S. McKenzie Skiles ◽  
Matthew Rogers ◽  
...  

Abstract Runoff from mountain snowpack is an important freshwater supply for many parts of the world. The deposition of aeolian dust on snow decreases snow albedo and increases the absorption of solar irradiance. This absorption accelerates melting, impacting the regional hydrological cycle in terms of timing and magnitude of runoff. The Moderate Resolution Imaging Spectroradiometer (MODIS) Dust Radiative Forcing in Snow (MODDRFS) satellite product allows estimation of the instantaneous (at time of satellite overpass) surface radiative forcing caused by dust. While such snapshots are useful, energy balance modeling requires temporally resolved radiative forcing to represent energy fluxes to the snowpack, as modulated primarily by varying cloud cover. Here, the instantaneous MODDRFS estimate is used as a tie point to calculate temporally resolved surface radiative forcing. Dust radiative forcing scenarios were considered for 1) clear-sky conditions and 2) all-sky conditions using satellite-based cloud observations. Comparisons against in situ stations in the Rocky Mountains show that accounting for the temporally resolved all-sky solar irradiance via satellite retrievals yields a more representative time series of dust radiative effects compared to the clear-sky assumption. The modeled impact of dust on enhanced snowmelt was found to be significant, accounting for nearly 50% of the total melt at the more contaminated station sites. The algorithm is applicable to regional basins worldwide, bearing relevance to both climate process research and the operational management of water resources.


2019 ◽  
Vol 11 (4) ◽  
pp. 416 ◽  
Author(s):  
Cheng Yang ◽  
Tonghua Wu ◽  
Jiemin Wang ◽  
Jimin Yao ◽  
Ren Li ◽  
...  

The ground surface soil heat flux (G0) quantifies the energy transfer between the atmosphere and the ground through the land surface. However; it is difficult to obtain the spatial distribution of G0 in permafrost regions because of the limitation of in situ observation and complication of ground surface conditions. This study aims at developing an improved G0 parameterization scheme applicable to permafrost regions of the Qinghai-Tibet Plateau under clear-sky conditions. We validated several existing remote sensing-based models to estimate G0 by analyzing in situ measurement data. Based on the validation of previous models on G0; we added the solar time angle to the G0 parameterization scheme; which considered the phase difference problem. The maximum values of RMSE and MAE between “measured G0” and simulated G0 using the improved parameterization scheme and in situ data were calculated to be 6.102 W/m2 and 5.382 W/m2; respectively. When the error of the remotely sensed land surface temperature is less than 1 K and the surface albedo measured is less than 0.02; the accuracy of estimates based on remote sensing data for G0 will be less than 5%. MODIS data (surface reflectance; land surface temperature; and emissivity) were used to calculate G0 in a 10 x 10 km region around Tanggula site; which is located in the continuous permafrost region with long-term records of meteorological and permafrost parameters. The results obtained by the improved scheme and MODIS data were consistent with the observation. This study enhances our understanding of the impacts of climate change on the ground thermal regime of permafrost and the land surface processes between atmosphere and ground surface in cold regions.


2008 ◽  
Vol 136 (12) ◽  
pp. 5148-5161 ◽  
Author(s):  
M. A. Jiménez ◽  
A. Mira ◽  
J. Cuxart ◽  
A. Luque ◽  
S. Alonso ◽  
...  

Abstract A mesoscale simulation for Majorca Island is made using the Méso-NH model for a spring night, under a slack synoptic pressure gradient with weak general winds and clear skies. The circulations over and around the island are driven mostly by the locally generated flows, due to the topography and the land–sea thermal contrast. The verification of mesoscale simulations in clear-sky conditions is difficult, especially if the network of stations is not very dense. The main objective of this work is to try to verify the mesoscale simulation using measurements from automatic weather stations and satellite measurements. The model outputs are compared with the available instrumental data and the representativeness of the stations is discussed. Furthermore, complete two-dimensional comparisons are made between the radiative surface temperatures produced by the model and those processed from the National Oceanic and Atmospheric Administration and Meteosat Second Generation (MSG) satellite sensors. The high temporal resolution of the MSG images also allows comparison of the temporal evolutions of the surface temperature between satellite pixels and model grid cells. The procedure permits assessment of the closeness of the simulation to in situ and remote sensing observations. The results of the comparison show that the model is able to reproduce most of the observed patterns, such as intense local cooling or persistent outflows at the largest basins.


2020 ◽  
Vol 14 (11) ◽  
pp. 3645-3662
Author(s):  
Christiaan T. van Dalum ◽  
Willem Jan van de Berg ◽  
Stef Lhermitte ◽  
Michiel R. van den Broeke

Abstract. Snow and ice albedo schemes in present-day climate models often lack a sophisticated radiation penetration scheme and do not explicitly include spectral albedo variations. In this study, we evaluate a new snow albedo scheme in the Regional Atmospheric Climate Model (RACMO2) for the Greenland ice sheet, version 2.3p3, that includes these processes. The new albedo scheme uses the Two-streAm Radiative TransfEr in Snow (TARTES) model and the Spectral-to-NarrOWBand ALbedo (SNOWBAL) module, version 1.2. Additionally, the bare-ice albedo parameterization has been updated. The snow and ice broadband and narrowband albedo output of the updated version of RACMO2 is evaluated using the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and Kangerlussuaq transect (K-transect) in situ data and Moderate Resolution Imaging Spectroradiometer (MODIS) remote-sensing observations. Generally, the modeled narrowband and broadband albedo is in very good agreement with satellite observations, leading to a negligible domain-averaged broadband albedo bias for the interior. Some discrepancies are, however, observed close to the ice margin. Compared to the previous model version, RACMO2.3p2, the broadband albedo is considerably higher in the bare-ice zone during the ablation season, as atmospheric conditions now alter the bare-ice broadband albedo. For most other regions, however, the updated broadband albedo is lower due to spectral effects, radiation penetration or enhanced snow metamorphism.


2019 ◽  
Author(s):  
Maria Paula da Silva ◽  
Lino A. Sander de Carvalho ◽  
Evlyn Novo ◽  
Daniel S. F. Jorge ◽  
Claudio C. F. Barbosa

Abstract. Given the importance of DOM in the carbon cycling of aquatic ecosystems, information on its seasonal variability is crucial. This study assesses the use of available absorption optical indices based on in situ data to both characterize the seasonal variability of the DOM dynamics in a highly complex environment and their viability of being used for satellite remote sensing on large scale studies. The study area comprises four lakes located at the Mamirauá Sustainable Development Reserve (MSDR). Samples for the determination of coloured dissolved organic matter (CDOM) and remote sensing reflectance (Rrs) were acquired in situ. The Rrs was applied to simulate MSI visible bands and used in the proposed models. Differences between lakes were tested regarding CDOM indices. Significant difference in the average of aCDOM (440), aCDOM spectra and S275–295 were found between lakes located inside the flood forest and those near the river bank. The proposed model showed that aCDOM can be used as proxy of S275–295 during rising water with good validation results, demonstrating the potential of Sentinel/MSI imagery data in large scale studies on the dynamics of DOM.


2010 ◽  
Vol 56 (199) ◽  
pp. 813-821 ◽  
Author(s):  
Daniel McGrath ◽  
Konrad Steffen ◽  
Irina Overeem ◽  
Sebastian H. Mernild ◽  
Bent Hasholt ◽  
...  

AbstractMeltwater runoff is an important component of the mass balance of the Greenland ice sheet (GrIS) and contributes to eustatic sea-level rise. In situ measurements of river runoff at the ˜325 outlets are nonexistent due to logistical difficulties. We develop a novel methodology using satellite observations of sediment plumes as a proxy for the onset, duration and volume of meltwater runoff from a basin of the GrIS. Sediment plumes integrate numerous poorly constrained processes, including meltwater refreezing and supra- and englacial water storage, and are formed by meltwater that exits the GrIS and enters the ocean. Plume characteristics are measured in Moderate Resolution Imaging Spectroradiometer (MODIS, band 1, 250 m) satellite imagery during the 2001-08 melt seasons. Plume formation and cessation in Kangerlussuaq Fjord, West Greenland, are positively correlated (r2 = 0.88, n = 5, p < 0.05; r2 = 0.93, n = 5, p < 0.05) with ablation onset and cessation at the Kangerlussuaq Transect automatic weather station S5 (490 ma.s.l., 6 km from the ice margin). Plume length is positively correlated (r2 = 0.52, n = 35, p < 0.05) with observed 4 day mean Watson River discharge throughout the 2007 and 2008 melt seasons. Plume length is used to infer instantaneous and annual cumulative Watson River discharge between 2001 and 2008. Reconstructed cumulative discharge values overestimate observed cumulative discharge values for 2007 and 2008 by 15% and 29%, respectively.


2012 ◽  
Vol 25 (14) ◽  
pp. 4785-4798 ◽  
Author(s):  
Dorothy K. Hall ◽  
Josefino C. Comiso ◽  
Nicolo E. DiGirolamo ◽  
Christopher A. Shuman ◽  
Jeffrey R. Key ◽  
...  

Abstract The authors have developed a climate-quality data record of the clear-sky surface temperature of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (IST) algorithm. Daily and monthly quality-controlled MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 are presented at 6.25-km spatial resolution on a polar stereographic grid along with metadata to permit detailed accuracy assessment. The ultimate goal is to develop a climate data record (CDR) that starts in 1981 with the Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder (APP) dataset and continues with MODIS data from 2000 to the present, and into the Visible Infrared Imager Radiometer Suite (VIIRS) era (the first VIIRS instrument was launched in October 2011). Differences in the APP and MODIS cloud masks have thus far precluded merging the APP and MODIS IST records, though this will be revisited after the APP dataset has been reprocessed with an improved cloud mask. IST of Greenland may be used to study temperature and melt trends and may also be used in data assimilation modeling and to calculate ice sheet mass balance. The MODIS IST climate-quality dataset provides a highly consistent and well-characterized record suitable for merging with earlier and future IST data records for climate studies. The complete MODIS IST daily and monthly data record is available online.


Sign in / Sign up

Export Citation Format

Share Document