scholarly journals Coniferous Plantations Growing Stock Volume Estimation Using Advanced Remote Sensing Algorithms and Various Fused Data

2021 ◽  
Vol 13 (17) ◽  
pp. 3468
Author(s):  
Xinyu Li ◽  
Jiangping Long ◽  
Meng Zhang ◽  
Zhaohua Liu ◽  
Hui Lin

Spatial distribution prediction of growing stock volume (GSV) for supporting the sustainable management of forest ecosystems, is one of the most widespread applications of remote sensing. For this purpose, remote sensing data were used as predictor variables in combination with ground data obtained from field sample plots. However, with the increase in forest GSV values, the spectral reflectance of remote sensing imagery is often saturated or less sensitive to the GSV changes, making accurate estimation difficult. To improve this, we examined the GSV estimation performance and data saturation of four optical remote sensing image datasets (Landsat 8, Sentinel-2, ZiYuan-3, and GaoFen-2) in the subtropical region of Central South China. First, various feature variables were extracted and three optimization methods were used to select optimal feature variable combinations. Subsequently, k-nearest-neighbor (kNN), random forest regression, and categorical boosting algorithms were employed to build the GSV estimation models, and evaluate the GSV estimation accuracy and saturation. Second, Gram Schmidt (GS) and NNDiffuse pan sharpening (NND) methods were employed to fuse the optimal multispectral images and explore various image fusion schemes suitable for GSV estimation. We proposed an adaptive stacking (AdaStacking) model ensemble algorithm to further improve GSV estimation performance. The results indicated that Sentinel-2 had the highest GSV estimation accuracy exhibiting a minimum relative root mean square error of 20.06% and saturation of 434 m3/ha, followed by GaoFen-2 with a minimum relative root mean square error of 22.16% and a saturation of 409 m3/ha. Among the four fusion images, the NND-B2 image—obtained by fusing the GaoFen-2 green band and Sentinel-2 multispectral image with the NND method—had the best estimation accuracy. The estimated optimal RMSEs of NND-B2 were 24.4% and 16.5% lower than those of GaoFen-2 and Sentinel-2, respectively. Therefore, the fused image data based on GF-2 and Sentinel-2 can effectively couple the advantages of the two images and significantly improve the GSV estimation performance. Moreover, the proposed adaptive stacking model is more effective in GSV estimation than a single model. The GSV estimation saturation value of the AdaStacking model based on NND-B2 was 5.4% higher than that of the KNN-Maha model. The GSV distribution map estimated by AdaStacking model used the NND-B2 dataset corresponded accurately with the field observations. This study provides some insights into the optical image fusion scheme, feature selection, and adaptive modeling algorithm in GSV estimation for coniferous forest.

2021 ◽  
Vol 13 (21) ◽  
pp. 4483
Author(s):  
W. Gareth Rees ◽  
Jack Tomaney ◽  
Olga Tutubalina ◽  
Vasily Zharko ◽  
Sergey Bartalev

Growing stock volume (GSV) is a fundamental parameter of forests, closely related to the above-ground biomass and hence to carbon storage. Estimation of GSV at regional to global scales depends on the use of satellite remote sensing data, although accuracies are generally lower over the sparse boreal forest. This is especially true of boreal forest in Russia, for which knowledge of GSV is currently poor despite its global importance. Here we develop a new empirical method in which the primary remote sensing data source is a single summer Sentinel-2 MSI image, augmented by land-cover classification based on the same MSI image trained using MODIS-derived data. In our work the method is calibrated and validated using an extensive set of field measurements from two contrasting regions of the Russian arctic. Results show that GSV can be estimated with an RMS uncertainty of approximately 35–55%, comparable to other spaceborne estimates of low-GSV forest areas, with 70% spatial correspondence between our GSV maps and existing products derived from MODIS data. Our empirical approach requires somewhat laborious data collection when used for upscaling from field data, but could also be used to downscale global data.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2866
Author(s):  
Rebeca Pérez-González ◽  
Xavier Sòria-Perpinyà ◽  
Juan Miguel Soria ◽  
Jesús Delegido ◽  
Patricia Urrego ◽  
...  

Remote sensing is an appropriate tool for water management. It allows the study of some of the main sources of pollution, such as cyanobacterial harmful algal blooms. These species are increasing due to eutrophication and the adverse effects of climate change. This leads to water quality loss, which has a major impact on the environment, including human water supplies, which consequently require more expensive purification processes. The application of satellite remote sensing images as bio-optical tools is an effective way to monitor and control phycocyanin concentrations, which indicate the presence of cyanobacteria. For this study, 90 geo-referenced phycocyanin measurements were performed in situ, using a Turner C3 Submersible Fluorometer and a laboratory spectrofluorometer, both calibrated with phycocyanin standard, in water bodies of the Iberian Peninsula. These samples were synchronized with Sentinel-2 satellite orbit. The images were processed using Sentinel Application Program software and corrected with the Case 2 Regional Coast color-extended atmospheric correction tool. To produce algorithms that would help to obtain the phycocyanin concentration from the reflectance measured by the multispectral instrument sensor of the satellite, the following band combinations were tested, among others: band 665 nm, band 705 nm, and band 740 nm. The samples were equally divided: half were used for the algorithm’s calibration, and the other half for its validation. With the best adjustment, the algorithm was made more robust and accurate through a recalculation, obtaining a determination coefficient of 0.7, a Root Mean Square Error of 8.1 µg L−1, and a Relative Root Mean Square Error of 19%. In several reservoirs, we observed alarming phycocyanin concentrations that may trigger many environmental health problems, as established by the World Health Organization. Remote sensing provides a rapid monitoring method for the temporal and spatial distribution of these cyanobacteria blooms to ensure good preventive management and control, in order to improve the environmental quality of inland waters.


Author(s):  
A. Zarei ◽  
M. Hasanlou ◽  
M. Mahdianpari

Abstract. Soil salinity, a significant environmental indicator, is considered one of the leading causes of land degradation, especially in arid and semi-arid regions. In many cases, this major threat leads to loss of arable land, reduces crop productivity, groundwater resources loss, increases economic costs for soil management, and ultimately increases the probability of soil erosion. Monitoring soil salinity distribution and degree of salinity and mapping the electrical conductivity (EC) using remote sensing techniques are crucial for land use management. Salt-effected soil is a predominant phenomenon in the Eshtehard Salt Lake located in Alborz, Iran. In this study, the potential of Sentinel-2 imagery was investigated for mapping and monitoring soil salinity. According to the satellite's pass, different salt properties were measured for 197 soil samples in the field data study. Therefore several spectral features, such as satellite band reflectance, salinity indices, and vegetation indices, were extracted from Sentinel-2 imagery. To build an optimum machine learning regression model for soil salinity estimation, three different regression models, including Gradient Boost Machine (GBM), Extreme Gradient Boost (XGBoost), and Random Forest (RF), were used. The XGBoostmethod outperformed GBM and RF with the coefficient of determination (R2) more than 76%, Root Mean Square Error (RMSE) about 0.84 dS m−1, and Normalized Root Mean Square Error (NRMSE) about 0.33 dS m−1. The results demonstrated that the integration of remote sensing data, field data, and using an appropriate machine learning model could provide high-precision salinity maps to monitor soil salinity as an environmental problem.


2021 ◽  
Vol 13 (9) ◽  
pp. 1630
Author(s):  
Yaohui Zhu ◽  
Guijun Yang ◽  
Hao Yang ◽  
Fa Zhao ◽  
Shaoyu Han ◽  
...  

With the increase in the frequency of extreme weather events in recent years, apple growing areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the frost loss in orchards during the flowering period is of great significance for optimizing disaster prevention measures, market apple price regulation, agricultural insurance, and government subsidy programs. The previous research on orchard frost disasters is mainly focused on early risk warning. Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model constructed using meteorological and remote sensing information and applies this model to the regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost event that occurred during the apple flowering period in Luochuan County, Northwestern China, on 17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard planting years, the number of flowering days, and the chill accumulation before frost, as well as the minimum temperature and daily temperature difference on the day of frost. Then, the model simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research can not only assist governments in optimizing traditional orchard frost prevention measures and market price regulation but can also provide a reference for agricultural insurance companies to formulate plans for compensation after frost.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 944
Author(s):  
Mihai A. Tanase ◽  
Ignacio Borlaf-Mena ◽  
Maurizio Santoro ◽  
Cristina Aponte ◽  
Gheorghe Marin ◽  
...  

While products generated at global levels provide easy access to information on forest growing stock volume (GSV), their use at regional to national levels is limited by temporal frequency, spatial resolution, or unknown local errors that may be overcome through locally calibrated products. This study assessed the need, and utility, of developing locally calibrated GSV products for the Romanian forests. To this end, we used national forest inventory (NFI) permanent sampling plots with largely concurrent SAR datasets acquired at C- and L-bands to train and validate a machine learning algorithm. Different configurations of independent variables were evaluated to assess potential synergies between C- and L-band. The results show that GSV estimation errors at C- and L-band were rather similar, relative root mean squared errors (RelRMSE) around 55% for forests averaging over 450 m3 ha−1, while synergies between the two wavelengths were limited. Locally calibrated models improved GSV estimation by 14% when compared to values obtained from global datasets. However, even the locally calibrated models showed particularly large errors over low GSV intervals. Aggregating the results over larger areas considerably reduced (down to 25%) the relative estimation errors.


2008 ◽  
Vol 54 (No. 1) ◽  
pp. 9-16
Author(s):  
R. Petráš ◽  
J. Mecko ◽  
V. Nociar

The results obtained in research on the quality of raw timber by means of the structure of assortments for the stands of poplar clones Robusta and I-214 are presented in the paper. Models for an estimation of the structure of basic assortments of poplar stands were constructed separately for each clone in dependence on mean diameter, quality of stems, and damage to stems in the stand. The clone Robusta has higher proportions of higher-quality assortments than the clone I-214. The accuracy of models was determined on empirical material. It was confirmed by statistical tests that the models did not have a systematic error. The relative root mean-square error for main assortments of the clone I-214 is 15–27% and Robusta 13–24%.


2020 ◽  
Vol 2019 (1) ◽  
pp. 297-306
Author(s):  
Andi Okta Fengki ◽  
Khairil Anwar Notodiputro ◽  
Kusman Sadik

Statistik indeks harga konsumen (IHK) atau consumer price index (CPI) juga dibutuhkan pada tingkat provinsi di era desentralisasi saat ini. Ketika IHK ingin diduga pada tingkat provinsi, permasalahan ukuran contoh kecil (small area) muncul karena survei untuk menghasilkan IHK ini di Indonesia dirancang untuk tingkat nasional. Akan tetapi, informasi dari statistik IHK 82 kota dapat membantu untuk menduga IHK provinsi. Metode pendugaan area kecil atau small area estimation (SAE) dapat diterapkan sebagai solusi untuk meningkatkan ketelitian hasil pendugaan langsung. Pada penelitian ini IHK provinsi diduga menggunakan model Fay-Herriot (FH). Hasilnya menunjukan bahwa model FH dapat menghasilkan statistik IHK provinsi dengan ketelitian yang lebih baik dari pendugaan langsung. Hal ini ditunjukan dengan nilai average relative root mean square error (ARRMSE) penduga FH IHK provinsi yang lebih kecil dari penduga langsungnya.


2019 ◽  
Vol 11 (13) ◽  
pp. 1598 ◽  
Author(s):  
Hua Su ◽  
Xin Yang ◽  
Wenfang Lu ◽  
Xiao-Hai Yan

Retrieving multi-temporal and large-scale thermohaline structure information of the interior of the global ocean based on surface satellite observations is important for understanding the complex and multidimensional dynamic processes within the ocean. This study proposes a new ensemble learning algorithm, extreme gradient boosting (XGBoost), for retrieving subsurface thermohaline anomalies, including the subsurface temperature anomaly (STA) and the subsurface salinity anomaly (SSA), in the upper 2000 m of the global ocean. The model combines surface satellite observations and in situ Argo data for estimation, and uses root-mean-square error (RMSE), normalized root-mean-square error (NRMSE), and R2 as accuracy evaluations. The results show that the proposed XGBoost model can easily retrieve subsurface thermohaline anomalies and outperforms the gradient boosting decision tree (GBDT) model. The XGBoost model had good performance with average R2 values of 0.69 and 0.54, and average NRMSE values of 0.035 and 0.042, for STA and SSA estimations, respectively. The thermohaline anomaly patterns presented obvious seasonal variation signals in the upper layers (the upper 500 m); however, these signals became weaker as the depth increased. The model performance fluctuated, with the best performance in October (autumn) for both STA and SSA, and the lowest accuracy occurred in January (winter) for STA and April (spring) for SSA. The STA estimation error mainly occurred in the El Niño-Southern Oscillation (ENSO) region in the upper ocean and the boundary of the ocean basins in the deeper ocean; meanwhile, the SSA estimation error presented a relatively even distribution. The wind speed anomalies, including the u and v components, contributed more to the XGBoost model for both STA and SSA estimations than the other surface parameters; however, its importance at deeper layers decreased and the contributions of the other parameters increased. This study provides an effective remote sensing technique for subsurface thermohaline estimations and further promotes long-term remote sensing reconstructions of internal ocean parameters.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 279 ◽  
Author(s):  
Ernest William Mauya ◽  
Joni Koskinen ◽  
Katri Tegel ◽  
Jarno Hämäläinen ◽  
Tuomo Kauranne ◽  
...  

Remotely sensed assisted forest inventory has emerged in the past decade as a robust and cost efficient method for generating accurate information on forest biophysical parameters. The launching and public access of ALOS PALSAR-2, Sentinel-1 (SAR), and Sentinel-2 together with the associated open-source software, has further increased the opportunity for application of remotely sensed data in forest inventories. In this study, we evaluated the ability of ALOS PALSAR-2, Sentinel-1 (SAR) and Sentinel-2 and their combinations to predict growing stock volume in small-scale forest plantations of Tanzania. The effects of two variable extraction approaches (i.e., centroid and weighted mean), seasonality (i.e., rainy and dry), and tree species on the prediction accuracy of growing stock volume when using each of the three remotely sensed data were also investigated. Statistical models relating growing stock volume and remotely sensed predictor variables at the plot-level were fitted using multiple linear regression. The models were evaluated using the k-fold cross validation and judged based on the relative root mean square error values (RMSEr). The results showed that: Sentinel-2 (RMSEr = 42.03% and pseudo − R2 = 0.63) and the combination of Sentinel-1 and Sentinel-2 (RMSEr = 46.98% and pseudo − R2 = 0.52), had better performance in predicting growing stock volume, as compared to Sentinel-1 (RMSEr = 59.48% and pseudo − R2 = 0.18) alone. Models fitted with variables extracted from the weighted mean approach, turned out to have relatively lower RMSEr % values, as compared to centroid approaches. Sentinel-2 rainy season based models had slightly smaller RMSEr values, as compared to dry season based models. Dense time series (i.e., annual) data resulted to the models with relatively lower RMSEr values, as compared to seasonal based models when using variables extracted from the weighted mean approach. For the centroid approach there was no notable difference between the models fitted using dense time series versus rain season based predictor variables. Stratifications based on tree species resulted into lower RMSEr values for Pinus patula tree species, as compared to other tree species. Finally, our study concluded that combination of Sentinel-1&2 as well as the use Sentinel-2 alone can be considered for remote-sensing assisted forest inventory in the small-scale plantation forests of Tanzania. Further studies on the effect of field plot size, stratification and statistical methods on the prediction accuracy are recommended.


Sign in / Sign up

Export Citation Format

Share Document