scholarly journals Three-Dimensional Surface Deformation Characteristics Based on Time Series InSAR and GPS Technologies in Beijing, China

2021 ◽  
Vol 13 (19) ◽  
pp. 3964
Author(s):  
Kunchao Lei ◽  
Fengshan Ma ◽  
Beibei Chen ◽  
Yong Luo ◽  
Wenjun Cui ◽  
...  

Excessive exploitation of the groundwater has resulted in obvious three-dimensional (3D) deformation features on the surface of the Beijing Plain. This paper, by combining Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) technologies, has obtained time-series information of the 3D surface deformation in the Beijing Plain, analyzing its spatial distribution characteristics. On this basis, the relationship between different controlling factors with the 3D deformation of the surface has been analyzed as well. The following results are obtained: (1) From 2013 to 2018, the land subsidence, which generally showed the trend of slowing down, was mainly concentrated in the eastern, northern, and southern regions of Beijing Plain, with multiple subsidence centers. (2) Under the International Terrestrial Reference Frame 2005 (ITRF2005), the horizontal direction of all GPS points in the plain is basically the same, with the dominant movement direction being NE112.5°~NE113.8°. Under the Eurasian reference frame, the horizontal movement rate of GPS points significantly decreases. The movement rate and direction of each point are not characteristic of overall trend activity. (3) The distribution and extent of the 3D surface deformation in the Beijing Plain are controlled by the basement structure. Part of the subsided area corresponds to a Quaternary depression formed at the junction of active faults disrupting the area. Similarly, the distribution of horizontal deformation in the E-W and N-S directions of the plain is controlled by the regional basement structure comprising major faults bounding horizontal deformation. (4) Groundwater exploitation is the main cause of the 3D surface deformation in the Beijing Plain. The groundwater funnels of the second and third confined aquifer are in suitable agreement with the land subsidence. The horizontal movement in the Beijing Plain is either directed toward the center of the groundwater or the land subsidence funnel, and the deformation is directed from areas with higher to areas with lower groundwater levels.

2019 ◽  
Vol 93 (12) ◽  
pp. 2651-2660 ◽  
Author(s):  
Sergey Samsonov

AbstractThe previously presented Multidimensional Small Baseline Subset (MSBAS-2D) technique computes two-dimensional (2D), east and vertical, ground deformation time series from two or more ascending and descending Differential Interferometric Synthetic Aperture Radar (DInSAR) data sets by assuming that the contribution of the north deformation component is negligible. DInSAR data sets can be acquired with different temporal and spatial resolutions, viewing geometries and wavelengths. The MSBAS-2D technique has previously been used for mapping deformation due to mining, urban development, carbon sequestration, permafrost aggradation and pingo growth, and volcanic activities. In the case of glacier ice flow, the north deformation component is often too large to be negligible. Historically, the surface-parallel flow (SPF) constraint was used to compute the static three-dimensional (3D) velocity field at various glaciers. A novel MSBAS-3D technique has been developed for computing 3D deformation time series where the SPF constraint is utilized. This technique is used for mapping 3D deformation at the Barnes Ice Cap, Baffin Island, Nunavut, Canada, during January–March 2015, and the MSBAS-2D and MSBAS-3D solutions are compared. The MSBAS-3D technique can be used for studying glacier ice flow at other glaciers and other surface deformation processes with large north deformation component, such as landslides. The software implementation of MSBAS-3D technique can be downloaded from http://insar.ca/.


2014 ◽  
Vol 962-965 ◽  
pp. 1066-1069
Author(s):  
De Shen Zhao ◽  
Dong Liang Guo

In order to obtain overburden and surface deformation law, this paper takes S2S9 working face fully-mechanized mining of certain coal mine for example, uses the finite element ADINA software, and it establishes two-dimensional numerical model, analyzes overburden and surface deformation caused by the working face mining. The study shows the amount of each point movement in the top of the mined-out area gradually decreases from the bottom to up, and the range of surface movement is also increasing with advancement of the coal excavation. After the completion of the working face, it forms a subsidence curve which is symmetry for the maximum vertical point and an antisymmetric horizontal deformation curve. The zero point of horizontal movement is located above the center of mining sector, and the maximum tilt is 2.044mm·m.


Author(s):  
Lin Guo ◽  
Huili Gong ◽  
Xiaojuan Li ◽  
Lin Zhu ◽  
Wei Lv ◽  
...  

Abstract. Land subsidence, as a surface response to the development, utilization and evolution of underground space, has become a global and multidisciplinary complex geological environment problem. Since the 1960s, land subsidence has been developing rapidly in the Beijing Plain area. Against the backdrop of the integration of Beijing, Tianjin and Hebei in addition to “southern water” (South-to-North Water Diversion Project, SNWDP) entering Beijing, the systematic study of the evolution mechanism of land subsidence is of great significance for the sustainable development of the regional economy. Firstly, this study used ENVISAT ASAR and RADARSAT-2 data to obtain surface deformation information for the Beijing Plain area from 2004 to 2015 and then verified the results. Secondly, the study area was divided into units using a 960 m×960 m grid, and the ground settlement rate of each grid unit from 2004 to 2015 was obtained. Finally, the Mann–Kendall test was performed on the grid to obtain the mutation information for each grid unit. Combined with hydrogeology and basic geological conditions, we have attempted to analyze the causes of the mutations in the grid. The results show that 2347 grid cells were mutated in a single year, with most of these distributed across the Yongding River alluvial fan and the middle and lower parts of the Chaobai River alluvial fan. A total of 1128 grid cells were mutated in multiple years, with the majority of these cells mainly distributed across the upper-middle area of the alluvial fan, near the emergency water source and at the edge of the groundwater funnel. This study aims to provide favorable technical support and a scientific basis for urban construction in Beijing.


Author(s):  
M. L. Gao ◽  
H. L. Gong ◽  
B. B. Chen ◽  
C. F. Zhou ◽  
K. S. Liu ◽  
...  

Abstract. InSAR time series analysis is widely used for detection and monitoring of slow surface deformation. In this paper, 15 TerraSAR-X radar images acquired in stripmap mode between 2012 and 2013 are processed for land subsidence monitoring with the Small Baseline Subset (SBAS) approach in Beijing Plain in China. Mapping results produced by SBAS show that the subsidence rates in the area of Beijing Plain range from −97.5 (subsidence) and to +23.8 mm yr−1 (uplift), relative to a presumably stable benchmark. The mapping result also reveals that there are the five subsidence centers formed by surface deformation spreading north to south east of the downtown. An uneven subsidence patten was detected near the Beijing Capital International Airpor, which may be related to loading of buildings and the aircraft.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Yuhang Yang ◽  
Zhiqiao Dong ◽  
Yuquan Meng ◽  
Chenhui Shao

High-fidelity characterization and effective monitoring of spatial and spatiotemporal processes are crucial for high-performance quality control of many manufacturing processes and systems in the era of smart manufacturing. Although the recent development in measurement technologies has made it possible to acquire high-resolution three-dimensional (3D) surface measurement data, it is generally expensive and time-consuming to use such technologies in real-world production settings. Data-driven approaches that stem from statistics and machine learning can potentially enable intelligent, cost-effective surface measurement and thus allow manufacturers to use high-resolution surface data for better decision-making without introducing substantial production cost induced by data acquisition. Among these methods, spatial and spatiotemporal interpolation techniques can draw inferences about unmeasured locations on a surface using the measurement of other locations, thus decreasing the measurement cost and time. However, interpolation methods are very sensitive to the availability of measurement data, and their performances largely depend on the measurement scheme or the sampling design, i.e., how to allocate measurement efforts. As such, sampling design is considered to be another important field that enables intelligent surface measurement. This paper reviews and summarizes the state-of-the-art research in interpolation and sampling design for surface measurement in varied manufacturing applications. Research gaps and future research directions are also identified and can serve as a fundamental guideline to industrial practitioners and researchers for future studies in these areas.


Geophysics ◽  
1986 ◽  
Vol 51 (5) ◽  
pp. 1127-1140 ◽  
Author(s):  
Paul M. Kieniewicz ◽  
Bruce P. Luyendyk

The Santa Maria Basin in southern California is a lowland bounded on the south by the Santa Ynez River fault and on the northeast by the Little Pine‐Foxen Canyon‐Santa Maria River faults. It contains Neogene sedimentary rocks which rest unconformably on a basement of Cretaceous and older clastic rocks. Analysis of over 4 000 gravity stations obtained from the Defense Mapping Agency suggests that the Bouguer anomaly contains a short‐wavelength component arising from a variable‐density contrast between the basin’s Neogene units and the Cretaceous basement. A three‐dimensional inversion of the short‐wavelength component (constrained by wells drilled to basement) yields a structure model of the basement and the average density of the overlying sediments, assuming that the basement does not contain large‐scale density variations. The density anomalies modeled in the Neogene sediments, showing higher densities in the basin troughs, can be related to diagenetic changes in the silica facies of the Monterey and Sisquoc formations. The basement structure model shows the basin as composed of parallel ridges and troughs, trending west‐northwest and bounded by steep slopes interpreted as fault scarps. The basin is bounded on the west by a north‐south trending slope which may also represent a fault scarp.


Tectonics ◽  
2007 ◽  
Vol 26 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Youichiro Takada ◽  
Yukitoshi Fukahata ◽  
Akinori Hashima ◽  
Toshiko Terakawa ◽  
Kenji Fukui ◽  
...  

2020 ◽  
Vol 12 (22) ◽  
pp. 3756
Author(s):  
Wei Shi ◽  
Guan Chen ◽  
Xingmin Meng ◽  
Wanyu Jiang ◽  
Yan Chong ◽  
...  

Land subsidence is one of the major urban geological hazards, which seriously restricts the development of many cities in the world. As one of the major cities in China, Xi’an has also been experiencing a large area of land subsidence due to excessive exploitation of groundwater. Since the Heihe Water Transfer Project (HWTP) became fully operational in late 2003, the problem of subsidence has been restrained, but other issues, such as ground rebounds, have appeared, and the effect of the underground space utilization on land subsidence remains unsolved. The spatial-temporal pattern of land subsidence and rebound in Xi’an after HWTP and their possible cause have so far not been well understood. In this study, the evolutionary characteristics of land subsidence and rebound in Xi’an city from 2007–2019 was investigated using Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-SAR) technology to process the Advanced Land Observing Satellite (ALOS) and Sentinel-1A SAR datasets, and their cause and the correlation with groundwater level changes and the underground space utilization were discussed. We found that the land subsidence rate in the study area slowed from 2007–2019, and the subsidence area shrank and gradually developed into three relatively independent and isolated subsidence areas primarily. Significant local rebound deformation up to 22 mm/y commenced in the groundwater recharge region during 2015–2019. The magnitude of local rebound was dominated by the rise in groundwater level due to HWTP, whereas tectonic faults and ground fissures control the range of subsidence and the uplift area. The influence of building load on surface deformation became increasingly evident and primarily manifested by slowing the subsidence reduction trend. Additionally, land subsidence caused by the disturbances during the subway construction period was stronger than that in the operational stage. Future land subsidence in Xi’an is predicted to be alleviated overall, and the areas of rebound deformation will continue increasing for a limited time. However, uneven settlement range may extend to the Qujiang and Xixian New District due to the rapid urban construction. Our results could provide a scientific basis for land subsidence hazard mitigation, underground space planning, and groundwater management in Xi’an or similar regions where severe ground subsidence was induced by rapid urbanization.


2012 ◽  
Vol 226-228 ◽  
pp. 1504-1508
Author(s):  
Ai Bing Jin ◽  
Long Fu Li ◽  
Fu Gen Deng ◽  
Min Zhe Zhang

While the tunnel crossing the ancient Great Wall, we must take effective measures to control ground deformation, prevent ground deformation is too large, destroying the heritage. In order to study the effects of tunnel excavation types on strata deformation, a three-dimensional computational model is built to simulate surface settlement and horizontal displacement by three different excavation types which are both-side heading method, CRD method, and hole pile method. Following comparative analysis, in line with the realistic program is recommended. The results show that both-side heading method can better control the surface deformation, and has a high efficiency of construction, which was selected as the construction scheme of tunnel crossing the ancient great wall. The results of this study are expected to provide construction experience to the works of a similar background.


Sign in / Sign up

Export Citation Format

Share Document