scholarly journals Reference Phase Stabilizer for Distributed Underwater Sonar Systems

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4279
Author(s):  
Lijie Yang ◽  
Ruirui Dang ◽  
Chunyi Song ◽  
Zhiwei Xu

An optical fiber is a promising approach for data and clock transmission in distributed underwater sonar systems. However, synchronization is a critical challenge in distributed sonar systems, which mandates accurate clock synchronization down to a sub degree. Potential phase misalignment is caused by fiber length variations. In this paper, we propose a fiber-based phase stabilizer method to achieve accurate clock synchronization among sensor nodes. We use fiber-based feedback loop between sensor nodes and central station unit to monitor phase variations. Subsequently, we leverage phase shifters symmetrically arranged on the forward lane and feedback lane to compensate real-time phase variation and maintain high-precision synchronization. Besides, an ambiguity eliminator circuit is designed to remove the clock’s cyclic ambiguity. Both analysis and experimental results suggest that the proposed phase stabilizer can achieve 10 MHz reference clock synchronization within 0.4 degree. We also analyze the impact of the reference clock’s phase error on the system range detection accuracy, which indicates that the proposed phase stabilizer can greatly improve detection accuracy of sonar systems.

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 302
Author(s):  
Chunde Liu ◽  
Xianli Su ◽  
Chuanwen Li

There is a growing interest in safety warning of underground mining due to the huge threat being faced by those working in underground mining. Data acquisition of sensors based on Internet of Things (IoT) is currently the main method, but the data anomaly detection and analysis of multi-sensors is a challenging task: firstly, the data that are collected by different sensors of underground mining are heterogeneous; secondly, real-time is required for the data anomaly detection of safety warning. Currently, there are many anomaly detection methods, such as traditional clustering methods K-means and C-means. Meanwhile, Artificial Intelligence (AI) is widely used in data analysis and prediction. However, K-means and C-means cannot directly process heterogeneous data, and AI algorithms require equipment with high computing and storage capabilities. IoT equipment of underground mining cannot perform complex calculation due to the limitation of energy consumption. Therefore, many existing methods cannot be directly used for IoT applications in underground mining. In this paper, a multi-sensors data anomaly detection method based on edge computing is proposed. Firstly, an edge computing model is designed, and according to the computing capabilities of different types of devices, anomaly detection tasks are migrated to different edge devices, which solve the problem of insufficient computing capabilities of the devices. Secondly, according to the requirements of different anomaly detection tasks, edge anomaly detection algorithms for sensor nodes and sink nodes are designed respectively. Lastly, an experimental platform is built for performance comparison analysis, and the experimental results show that the proposed algorithm has better performance in anomaly detection accuracy, delay, and energy consumption.


2015 ◽  
Vol 764-765 ◽  
pp. 1319-1323
Author(s):  
Rong Shue Hsiao ◽  
Ding Bing Lin ◽  
Hsin Piao Lin ◽  
Jin Wang Zhou

Pyroelectric infrared (PIR) sensors can detect the presence of human without the need to carry any device, which are widely used for human presence detection in home/office automation systems in order to improve energy efficiency. However, PIR detection is based on the movement of occupants. For occupancy detection, PIR sensors have inherent limitation when occupants remain relatively still. Multisensor fusion technology takes advantage of redundant, complementary, or more timely information from different modal sensors, which is considered an effective approach for solving the uncertainty and unreliability problems of sensing. In this paper, we proposed a simple multimodal sensor fusion algorithm, which is very suitable to be manipulated by the sensor nodes of wireless sensor networks. The inference algorithm was evaluated for the sensor detection accuracy and compared to the multisensor fusion using dynamic Bayesian networks. The experimental results showed that a detection accuracy of 97% in room occupancy can be achieved. The accuracy of occupancy detection is very close to that of the dynamic Bayesian networks.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ming Xia ◽  
Peiliang Sun ◽  
Xiaoyan Wang ◽  
Yan Jin ◽  
Qingzhang Chen

Localization is a fundamental research issue in wireless sensor networks (WSNs). In most existing localization schemes, several beacons are used to determine the locations of sensor nodes. These localization mechanisms are frequently based on an assumption that the locations of beacons are known. Nevertheless, for many WSN systems deployed in unstable environments, beacons may be moved unexpectedly; that is, beacons are drifting, and their location information will no longer be reliable. As a result, the accuracy of localization will be greatly affected. In this paper, we propose a distributed beacon drifting detection algorithm to locate those accidentally moved beacons. In the proposed algorithm, we designed both beacon self-scoring and beacon-to-beacon negotiation mechanisms to improve detection accuracy while keeping the algorithm lightweight. Experimental results show that the algorithm achieves its designed goals.


2012 ◽  
Vol 19 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Y. J. Du ◽  
J. F. Bao ◽  
J. W. Jiang

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shuangjiang Du ◽  
Baofu Zhang ◽  
Pin Zhang ◽  
Peng Xiang ◽  
Hong Xue

Infrared target detection is a popular applied field in object detection as well as a challenge. This paper proposes the focus and attention mechanism-based YOLO (FA-YOLO), which is an improved method to detect the infrared occluded vehicles in the complex background of remote sensing images. Firstly, we use GAN to create infrared images from the visible datasets to make sufficient datasets for training as well as using transfer learning. Then, to mitigate the impact of the useless and complex background information, we propose the negative sample focusing mechanism to focus on the confusing negative sample training to depress the false positives and increase the detection precision. Finally, to enhance the features of the infrared small targets, we add the dilated convolutional block attention module (dilated CBAM) to the CSPdarknet53 in the YOLOv4 backbone. To verify the superiority of our model, we carefully select 318 infrared occluded vehicle images from the VIVID-infrared dataset for testing. The detection accuracy-mAP improves from 79.24% to 92.95%, and the F1 score improves from 77.92% to 88.13%, which demonstrates a significant improvement in infrared small occluded vehicle detection.


Author(s):  
Jovin Angelico ◽  
Ken Ratri Retno Wardani

The computer ability to detect human being by computer vision is still being improved both in accuracy or computation time. In low-lighting condition, the detection accuracy is usually low. This research uses additional information, besides RGB channels, namely a depth map that shows objects’ distance relative to the camera. This research integrates Cascade Classifier (CC) to localize the potential object, the Convolutional Neural Network (CNN) technique to identify the human and nonhuman image, and the Kalman filter technique to track human movement. For training and testing purposes, there are two kinds of RGB-D datasets used with different points of view and lighting conditions. Both datasets have been selected to remove images which contain a lot of noises and occlusions so that during the training process it will be more directed. Using these integrated techniques, detection and tracking accuracy reach 77.7%. The impact of using Kalman filter increases computation efficiency by 41%.


2021 ◽  
Vol 13 (12) ◽  
pp. 306
Author(s):  
Ahmed Dirir ◽  
Henry Ignatious ◽  
Hesham Elsayed ◽  
Manzoor Khan ◽  
Mohammed Adib ◽  
...  

Object counting is an active research area that gained more attention in the past few years. In smart cities, vehicle counting plays a crucial role in urban planning and management of the Intelligent Transportation Systems (ITS). Several approaches have been proposed in the literature to address this problem. However, the resulting detection accuracy is still not adequate. This paper proposes an efficient approach that uses deep learning concepts and correlation filters for multi-object counting and tracking. The performance of the proposed system is evaluated using a dataset consisting of 16 videos with different features to examine the impact of object density, image quality, angle of view, and speed of motion towards system accuracy. Performance evaluation exhibits promising results in normal traffic scenarios and adverse weather conditions. Moreover, the proposed approach outperforms the performance of two recent approaches from the literature.


2021 ◽  
pp. 107699862199436
Author(s):  
Yue Liu ◽  
Hongyun Liu

The prevalence and serious consequences of noneffortful responses from unmotivated examinees are well-known in educational measurement. In this study, we propose to apply an iterative purification process based on a response time residual method with fixed item parameter estimates to detect noneffortful responses. The proposed method is compared with the traditional residual method and noniterative method with fixed item parameters in two simulation studies in terms of noneffort detection accuracy and parameter recovery. The results show that when severity of noneffort is high, the proposed method leads to a much higher true positive rate with a small increase of false discovery rate. In addition, parameter estimation is significantly improved by the strategies of fixing item parameters and iteratively cleansing. These results suggest that the proposed method is a potential solution to reduce the impact of data contamination due to severe low test-taking effort and to obtain more accurate parameter estimates. An empirical study is also conducted to show the differences in the detection rate and parameter estimates among different approaches.


2021 ◽  
Author(s):  
Chongyu Wang ◽  
Di Zhang ◽  
Yonghui Xie

Abstract The steam turbine rotor is still the main power generation equipment. Affected by the impact of new energy on the power grid, the steam turbine needs to participate in peak load regulation, which will make turbine rotor components more prone to failure. The rotor is an important equipment of a steam turbine. Unbalance and misalignment are the normal state of rotor failure. In recent years, more and more attention has been paid to the fault detection method based on deep learning, which takes rotating machinery as the object. However, there is a lack of research on actual steam turbine rotors. In this paper, a method of rotor unbalance and parallel misalignment fault detection based on residual network is proposed, which realizes the end-to-end fault detection of rotor. Meanwhile, the method is evaluated with numerical simulation data, and the multi task detection of rotor unbalance, parallel misalignment, unbalanced parallel misalignment coupling faults (coupling fault called in this paper) is realized. The influence of signal-to-noise ratio and the number of training samples on the detection performance of neural network is discussed. The detection accuracy of unbalanced position is 93.5%, that of parallel misalignment is 99.1%. The detection accuracy for unbalance and parallel misalignment is 89.1% and 99.1%, respectively. The method can realize the direct mapping between the unbalanced, parallel misalignment, coupling fault vibration signals and the fault detection results. The method has the ability to automatically extract fault features. It overcomes the shortcoming of traditional methods that rely on signal processing experience, and has the characteristics of high precision and strong robustness.


Sign in / Sign up

Export Citation Format

Share Document