scholarly journals Development of a LeNet-5 Gas Identification CNN Structure for Electronic Noses

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 217 ◽  
Author(s):  
Guangfen Wei ◽  
Gang Li ◽  
Jie Zhao ◽  
Aixiang He

A new LeNet-5 gas identification convolutional neural network structure for electronic noses is proposed and developed in this paper. Inspired by the tremendous achievements made by convolutional neural networks in the field of computer vision, the LeNet-5 was adopted and improved for a 12-sensor array based electronic nose system. Response data of the electronic nose to different concentrations of CO, CH4 and their mixtures were acquired by an automated gas distribution and test system. By adjusting the parameters of the CNN structure, the gas LeNet-5 was improved to recognize the three categories of CO, CH4 and their mixtures omitting the concentration influences. The final gas identification accuracy rate reached 98.67% with the unused data as test set by the improved gas LeNet-5. Comparison with results of Multiple Layer Perceptron neural networks and Probabilistic Neural Network verifies the improvement of recognition rate while with the same level of time cost, which proved the effectiveness of the proposed approach.

2018 ◽  
Vol 18 (12) ◽  
pp. 1850148 ◽  
Author(s):  
Xiang Zhang ◽  
Renwen Chen ◽  
Qinbang Zhou

This study presents a damage identification method that combines wavelet packet transforms (WPTs) with neural network ensembles (NNEs). The WPT is used to extract damage features, which are taken as the input vectors in the NNEs used for damage identification. An experiment was performed on a helicopter rotor blades structure to verify the proposed method. First, the vibration responses collected by different sensors are decomposed using the WPT. Second, the relative band energy of each decomposed frequency band is calculated and fused as the damage feature vectors. Third, two types of the NNEs are designed. One is based on the backward propagation neural networks (BPNNs) for detecting the damage locations and severities and the other one is based on the probabilistic neural network (PNN) to detect the damage types. Finally, the trained NNEs are employed in damage identification. From the identification outcomes, it is concluded that damage information can be extracted effectively by the WPT and the identification accuracy of the NNEs is better than that of individual neural networks (INNs).


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


2020 ◽  
Vol 13 (5) ◽  
pp. 1149-1161
Author(s):  
T Deepika ◽  
V. Lokesha

A Topological index is a numeric quantity which characterizes the whole structure of a graph. Adriatic indices are also part of topological indices, mainly it is classified into two namely extended variables and discrete adriatic indices, especially, discrete adriatic indices are analyzed on the testing sets provided by the International Academy of Mathematical Chemistry (IAMC) and it has been shown that they have good presaging substances in many compacts. This contrived attention to compute some discrete adriatic indices of probabilistic neural networks.


Author(s):  
Benhui Xia ◽  
Dezhi Han ◽  
Ximing Yin ◽  
Gao Na

To secure cloud computing and outsourced data while meeting the requirements of automation, many intrusion detection schemes based on deep learn ing are proposed. Though the detection rate of many network intrusion detection solutions can be quite high nowadays, their identification accuracy on imbalanced abnormal network traffic still remains low. Therefore, this paper proposes a ResNet &Inception-based convolutional neural network (RICNN) model to abnormal traffic classification. RICNN can learn more traffic features through the Inception unit, and the degradation problem of the network is eliminated through the direct map ping unit of ResNet, thus the improvement of the model?s generalization ability can be achievable. In addition, to simplify the network, an improved version of RICNN, which makes it possible to reduce the number of parameters that need to be learnt without degrading identification accuracy, is also proposed in this paper. The experimental results on the dataset CICIDS2017 show that RICNN not only achieves an overall accuracy of 99.386% but also has a high detection rate across different categories, especially for small samples. The comparison experiments show that the recognition rate of RICNN outperforms a variety of CNN models and RNN models, and the best detection accuracy can be achieved.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 745 ◽  
Author(s):  
Malathy Emperuman ◽  
Srimathi Chandrasekaran

Sensor devices in wireless sensor networks are vulnerable to faults during their operation in unmonitored and hazardous environments. Though various methods have been proposed by researchers to detect sensor faults, only very few research studies have reported on capturing the dynamics of the inherent states in sensor data during fault occurrence. The continuous density hidden Markov model (CDHMM) is proposed in this research to determine the dynamics of the state transitions due to fault occurrence, while neural networks are utilized to classify the faults based on the state transition probability density generated by the CDHMM. Therefore, this paper focuses on the fault detection and classification using the hybridization of CDHMM and various neural networks (NNs), namely the learning vector quantization, probabilistic neural network, adaptive probabilistic neural network, and radial basis function. The hybrid models of each NN are used for the classification of sensor faults, namely bias, drift, random, and spike. The proposed methods are evaluated using four performance metrics which includes detection accuracy, false positive rate, F1-score, and the Matthews correlation coefficient. The simulation results show that the learning vector quantization NN classifier outperforms the detection accuracy rate when compared to the other classifiers. In addition, an ensemble NN framework based on the hybrid CDHMM classifier is built with majority voting scheme for decision making and classification. The results of the hybrid CDHMM ensemble classifiers clearly indicates the efficacy of the proposed scheme in capturing the dynamics of change of statesm which is the vital aspect in determining rapidly-evolving instant faults that occur in wireless sensor networks.


2013 ◽  
Vol 2 (2) ◽  
pp. 66-79 ◽  
Author(s):  
Onsy A. Abdel Alim ◽  
Amin Shoukry ◽  
Neamat A. Elboughdadly ◽  
Gehan Abouelseoud

In this paper, a pattern recognition module that makes use of 3-D images of objects is presented. The proposed module takes advantage of both the generalization capability of neural networks and the possibility of manipulating 3-D images to generate views at different poses of the object that is to be recognized. This allows the construction of a robust 3-D object recognition module that can find use in various applications including military, biomedical and mine detection applications. The paper proposes an efficient training procedure and decision making strategy for the suggested neural network. Sample results of testing the module on 3-D images of several objects are also included along with an insightful discussion of the implications of the results.


2016 ◽  
Vol 12 (6) ◽  
pp. 148
Author(s):  
Nasim Nasirpour ◽  
Alireza Mazdaki ◽  
Esmail Enayati

<p>Stock companies play a key role in the economy of any country and the success of these companies depends to a great degree on investors and creditors’ interest who invest in them. Auditors’ reports assume a special position in the decisions taken by investors and creditors. Therefore, the importance of offering high quality information with a view on recent events in the firms (bankruptcy and dissolution, financial scandals, loses suffered by creditors, etc.) becomes clear; moreover, audit reports can prevent these events by creating certain signals. To this end, modern heuristic methods for the prediction of the type of auditor’s opinion are offered in this paper. The aim of this study is to investigate the ability of probabilistic neural network method and to compare it with artificial neural network in order to identify and predict the type of independent auditor’s opinion in Iran in the time period of 2009 to 2013. The patterns used to predict the type of independent auditor’s opinion can be divided into different categories-these categories are becoming more complex and more advanced: single-variable models, multi discriminant analysis, regression function, neural networks, etc. neural networks are getting increasing popularity among researchers for their non-linear and non-parametric properties. Therefore, modern approaches are used in this study to predict the type of auditor’s opinion.</p>


2012 ◽  
Vol 263-266 ◽  
pp. 3374-3377
Author(s):  
Hua Liang Wu ◽  
Zhen Dong Mu ◽  
Jian Feng Hu

In the application of the classification, neural networks are often used as a classification tool, In this paper, neural network is introduced on motor imagery EEG analysis, the first EEG Hjort conversion, and then the brain electrical signal is converted into the frequency domain, Finally, the fisher distance for feature extraction in the EEG analysis, identification of the study sample was 97 86% recognition rate is 80% of the test sample.


2013 ◽  
Vol 441 ◽  
pp. 738-741 ◽  
Author(s):  
Shuo Ding ◽  
Xiao Heng Chang ◽  
Qing Hui Wu

The network model of probabilistic neural network and its method of pattern classification and discrimination are first introduced in this paper. Then probabilistic neural network and three usually used back propagation neural networks are established through MATLAB7.0. The pattern classification of dots on a two-dimensional plane is taken as an example. Probabilistic neural network and improved back propagation neural networks are used to classify these dots respectively. Their classification results are compared with each other. The simulation results show that compared with back propagation neural networks, probabilistic neural network has simpler learning rules, faster training speed and it needs fewer training samples; the pattern classification method based on probabilistic neural network is very effective, and it is superior to the one based on back propagation neural networks in classifying speed, accuracy as well as generalization ability.


2018 ◽  
Vol 61 (2) ◽  
pp. 399-409 ◽  
Author(s):  
Fangle Chang ◽  
Paul Heinemann

Abstract. Odor emitted from dairy operations may cause negative reactions by farm neighbors. Identification and evaluation of such malodors is vital for better understanding of human response and methods for mitigating effects of odors. The human nose is a valuable tool for odor assessment, but using human panels can be costly and time-consuming, and human evaluation of odor is subjective. Sensing devices, such as an electronic nose, have been widely used to measure volatile emissions from different materials. The challenge, though, is connecting human assessment of odors with the quantitative measurements from instruments. In this work, a prediction system was designed and developed to use instruments to predict human assessment of odors from common dairy operations. The model targets are the human responses to odor samples evaluated using a general pleasantness scale ranging from -11 (extremely unpleasant) to +11 (extremely pleasant). The model inputs were the electronic nose measurements. Three different neural networks, a Levenberg-Marquardt back-propagation neural network (LMBNN), a scaled conjugate gradient back-propagation neural network (CGBNN), and a resilient back-propagation neural network (RPBNN), were applied to connect these two sources of information (human assessments and instrument measurements). The results showed that the LMBNN model can predict human assessments with accuracy as high as 78% within a 10% range and as high as 63% within a 5% range of the targets in independent validation. In addition, the LMBNN model performed with the best stability in both training and independent validation. Keywords: Animal production, Hedonic tone, Olfactometric models.


Sign in / Sign up

Export Citation Format

Share Document