scholarly journals PLUG-N-HARVEST Architecture for Secure and Intelligent Management of Near-Zero Energy Buildings

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 843 ◽  
Author(s):  
Rafael Marin-Perez ◽  
Iakovos Michailidis ◽  
Dan Garcia-Carrillo ◽  
Christos Korkas ◽  
Elias Kosmatopoulos ◽  
...  

Building Automation (BA) is key to encourage the growth of more sustainable cities and smart homes. However, current BA systems are not able to manage new constructions based on Adaptable/Dynamic Building Envelopes (ADBE) achieving near-zero energy-efficiency. The ADBE buildings integrate Renewable Energy Sources (RES) and Envelope Retrofitting (ER) that must be managed by new BA systems based on Artificial Intelligence (AI) and Internet of Things (IoT) through secure protocols. This paper presents the PLUG-N-HARVEST architecture based on cloud AI systems and security-by-design IoT networks to manage near-zero ADBE constructions in both residential and commercial buildings. To demonstrate the PLUG-N-HARVEST architecture, three different real-world pilots have been considered in Germany, Greece and Spain. The paper describes the Spain pilot of residential buildings including the deployment of IoT wireless networks (i.e., sensors and actuators) based on Zwave technology to enable plug-and-play installations. The real-world tests showed the high efficiency of security-by-design Internet communications between building equipment and cloud management systems. Moreover, the results of cloud intelligent management demonstrate the improvements in both energy consumption and comfort conditions.

2021 ◽  
Vol 13 (24) ◽  
pp. 13934
Author(s):  
Hanan S. S. Ibrahim ◽  
Ahmed Z. Khan ◽  
Yehya Serag ◽  
Shady Attia

Retrofitting “nearly-zero energy” heritage buildings has always been controversial, due to the usual association of the “nearly-zero energy” target with high energy performance and the utilization of renewable energy sources in highly regarded cultural values of heritage buildings. This paper aims to evaluate the potential of turning heritage building stock into a “nearly-zero energy” in hot, dry climates, which has been addressed in only a few studies. Therefore, a four-phase integrated energy retrofitting methodology was proposed and applied to a sample of heritage residential building stock in Egypt along with microscale analysis on buildings. Three reference buildings were selected, representing the most dominant building typologies. The study combines field measurements and observations with energy simulations. In addition, simulation models were created and calibrated based on monitored data in the reference buildings. The results show that the application of hybrid passive and active non-energy generating scenarios significantly impacts energy use in the reference buildings, e.g., where 66.4% of annual electricity use can be saved. Moreover, the application of solar energy sources approximately covers the energy demand in the reference buildings, e.g., where an annual self-consumption of electricity up to 78% and surplus electricity up to 20.4% can be achieved by using photo-voltaic modules. Furthermore, annual natural gas of up to 66.8% can be saved by using two unglazed solar collectors. Lastly, achieving “nearly-zero energy” was possible for the presented case study area. The originality of this work lies in developing and applying an informed retrofitting (nearly-zero energy) guide to be used as a benchmark energy model for buildings that belong to an important historical era. The findings contribute to fill a gap in existing studies of integrating renewable energy sources to achieve “nearly-zero energy” in heritage buildings in hot climates.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5715
Author(s):  
Renars Millers ◽  
Aleksandrs Korjakins ◽  
Arturs Lešinskis ◽  
Anatolijs Borodinecs

The focus of this research paper is to develop a verified simulation model for a cooling panel with integrated phase-change materials (PCMs)—a stainless steel panel filled with PCM and integrated hydronic piping circuit. This solution is targeted for passive cooling of residential buildings in Baltic Sea region that experience overheating for most of the year due to highly insulated building envelopes and extensive glazing—a phenomena for nearly zero energy buildings (NZEBs). This approach aims to maintain comfortable indoor temperature all year round by passive means—free-cooling, adiabatic (evaporative) cooling or limited mechanical cooling. The simulations are performed with IDA ICE 4.8 and the measurements for simulation model verification are collected from a test chamber. The results show that reasonable agreement can be reached for simulated and experimentally measured data.


2021 ◽  
Author(s):  
Mohammad Reza Bahrami

Nowadays, one of the global problems is climate change. Commercial and residential buildings are among the most powerful consumers of energy. The energy consumption of buildings increases because of the development of the residents’ needs. Zero Energy Building uses renewable energy sources therefore Zero Energy Buildings have advantages in the field of environmental care because of the mitigation of CO2 emissions and the decrease of energy use in the building sector. The deposits of fossil fuel deplete at a high rate. The new deposits are extremely hard to find and if they are discovered are smaller than already used ones. Therefore, Zero Energy Buildings are the solution for this problem because they do not depend on fuel.


Author(s):  
Mihail-Bogdan Căruțașiu ◽  
Constantin Ionescu ◽  
Horia Necula

Abstract The European Legislation is very strict regarding the importance of reducing the energy consumption in buildings sector. The importance of achieving nearly zero energy consumption levels for both new and existing buildings is also highlighted in each Members’ national legislation. Moreover, the high percentage of existing buildings across European Union, indicates that they need to be adequately approached in order to achieve the ambitious energy efficiency goals. This implies creating the optimal technical and financial retrofit strategies regarding minimizing the energy consumption without lowering the interior comfort levels. In Romania, there is no unitary strategy aiming to maximize the energy efficiency in buildings which also takes into consideration the financial part of the process. Moreover, there are no known national guidelines and strategies for buildings retrofit which takes into consideration a wide range of equipment. The Romanian Energy Efficiency Strategy presents few possibilities resulted from integrating renewable energy sources within typical Romanian buildings, while the Buildings Performance Institute Europe conducted a research regarding the potential of nearly Zero Energy Buildings implementation across Romanian territory. Both studies refer only to typical buildings and do not present a large perspective for retrofitting action, while the financial study is not properly presented. Thus, this paper develops a comprehensive financial study which could be used as guideline by stakeholders, in order to find the best technical solution for decreasing the final energy consumption in Romanian residential buildings. Using the RETScreen software and its economical features, there were developed several energy efficiency solutions, and by analyzing the financial benefits implied, the best solution was chosen. By adopting the solutions presented within this feasibility study, the energy consumption of buildings should be significantly reduced.


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


2021 ◽  
Vol 13 (9) ◽  
pp. 5201
Author(s):  
Kittisak Lohwanitchai ◽  
Daranee Jareemit

The concept of a zero energy building is a significant sustainable strategy to reduce greenhouse gas emissions. The challenges of zero energy building (ZEB) achievement in Thailand are that the design approach to reach ZEB in office buildings is unclear and inconsistent. In addition, its implementation requires a relatively high investment cost. This study proposes a guideline for cost-optimal design to achieve the ZEB for three representative six-story office buildings in hot and humid Thailand. The energy simulations of envelope designs incorporating high-efficiency systems are carried out using eQuest and daylighting simulation using DIALux evo. The final energy consumptions meet the national ZEB target but are higher than the rooftop PV generation. To reduce such an energy gap, the ratios of building height to width are proposed. The cost-benefit of investment in ZEB projects provides IRRs ranging from 10.73 to 13.85%, with payback periods of 7.2 to 8.5 years. The energy savings from the proposed designs account for 79.2 to 81.6% of the on-site energy use. The investment of high-performance glazed-windows in the small office buildings is unprofitable (NPVs = −14.77–−46.01). These research results could help architects and engineers identify the influential parameters and significant considerations for the ZEB design. Strategies and technical support to improve energy performance in large and mid-rise buildings towards ZEB goals associated with the high investment cost need future investigations.


Smart Cities ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 471-495
Author(s):  
Viktor Stepaniuk ◽  
Jayakrishnan Pillai ◽  
Birgitte Bak-Jensen ◽  
Sanjeevikumar Padmanaban

The smart active residential buildings play a vital role to realize intelligent energy systems by harnessing energy flexibility from loads and storage units. This is imperative to integrate higher proportions of variable renewable energy generation and implement economically attractive demand-side participation schemes. The purpose of this paper is to develop an energy management scheme for smart sustainable buildings and analyze its efficacy when subjected to variable generation, energy storage management, and flexible demand control. This work estimate the flexibility range that can be reached utilizing deferrable/controllable energy system units such as heat pump (HP) in combination with on-site renewable energy sources (RESs), namely photovoltaic (PV) panels and wind turbine (WT), and in-house thermal and electric energy storages, namely hot water storage tank (HWST) and electric battery as back up units. A detailed HP model in combination with the storage tank is developed that accounts for thermal comforts and requirements, and defrost mode. Data analytics is applied to generate demand and generation profiles, and a hybrid energy management and a HP control algorithm is developed in this work. This is to integrate all active components of a building within a single complex-set of energy management solution to be able to apply demand response (DR) signals, as well as to execute all necessary computation and evaluation. Different capacity scenarios of the HWST and battery are used to prioritize the maximum use of renewable energy and consumer comfort preferences. A flexibility range of 22.3% is achieved for the scenario with the largest HWST considered without a battery, while 10.1% in the worst-case scenario with the smallest HWST considered and the largest battery. The results show that the active management and scheduling scheme developed to combine and prioritize thermal, electrical and storage units in buildings is essential to be studied to demonstrate the adequacy of sustainable energy buildings.


2015 ◽  
Vol 785 ◽  
pp. 576-580 ◽  
Author(s):  
Liaw Geok Pheng ◽  
Rosnani Affandi ◽  
Mohd Ruddin Ab Ghani ◽  
Chin Kim Gan ◽  
Jano Zanariah

Solar energy is one of the more attractive renewable energy sources that can be used as an input energy source for heat engines. In fact, any heat energy sources can be used with the Stirling engine. Stirling engines are mechanical devices working theoretically on the Stirling cycle, or its modifications, in which compressible fluids, such as air, hydrogen, helium, nitrogen or even vapors, are used as working fluids. When comparing with the internal combustion engine, the Stirling engine offers possibility for having high efficiency engine with less exhaust emissions. However, this paper analyzes the basic background of Stirling engine and reviews its existing literature pertaining to dynamic model and control system for parabolic dish-stirling (PD) system.


Sign in / Sign up

Export Citation Format

Share Document