scholarly journals Classification of Lifting Techniques for Application of A Robotic Hip Exoskeleton

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 963 ◽  
Author(s):  
Baojun Chen ◽  
Francesco Lanotte ◽  
Lorenzo Grazi ◽  
Nicola Vitiello ◽  
Simona Crea

The number of exoskeletons providing load-lifting assistance has significantly increased over the last decade. In this field, to take full advantage of active exoskeletons and provide appropriate assistance to users, it is essential to develop control systems that are able to reliably recognize and classify the users’ movement when performing various lifting tasks. To this end, the movement-decoding algorithm should work robustly with different users and recognize different lifting techniques. Currently, there are no studies presenting methods to classify different lifting techniques in real time for applications with lumbar exoskeletons. We designed a real-time two-step algorithm for a portable hip exoskeleton that can detect the onset of the lifting movement and classify the technique used to accomplish the lift, using only the exoskeleton-embedded sensors. To evaluate the performance of the proposed algorithm, 15 healthy male subjects participated in two experimental sessions in which they were asked to perform lifting tasks using four different techniques (namely, squat lifting, stoop lifting, left-asymmetric lifting, and right-asymmetric lifting) while wearing an active hip exoskeleton. Five classes (the four lifting techniques plus the class “no lift”) were defined for the classification model, which is based on a set of rules (first step) and a pattern recognition algorithm (second step). Leave-one-subject-out cross-validation showed a recognition accuracy of 99.34 ± 0.85%, and the onset of the lift movement was detected within the first 121 to 166 ms of movement.


2020 ◽  
Vol 12 (1) ◽  
pp. 1-11
Author(s):  
Arivudainambi D. ◽  
Varun Kumar K.A. ◽  
Vinoth Kumar R. ◽  
Visu P.

Ransomware is a malware which affects the systems data with modern encryption techniques, and the data is recovered once a ransom amount is paid. In this research, the authors show how ransomware propagates and infects devices. Live traffic classifications of ransomware have been meticulously analyzed. Further, a novel method for the classification of ransomware traffic by using deep learning methods is presented. Based on classification, the detection of ransomware is approached with the characteristics of the network traffic and its communications. In more detail, the behavior of popular ransomware, Crypto Wall, is analyzed and based on this knowledge, a real-time ransomware live traffic classification model is proposed.



2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Fengying Ma ◽  
Jingyao Zhang ◽  
Wei Liang ◽  
Jingyu Xue

Atrial fibrillation (AF), as one of the most common arrhythmia diseases in clinic, is a malignant threat to human health. However, AF is difficult to monitor in real time due to its intermittent nature. Wearable electrocardiogram (ECG) monitoring equipment has flourished in the context of telemedicine due to its real-time monitoring and simple operation in recent years, providing new ideas and methods for the detection of AF. In this paper, we propose a low computational cost classification model for robust detection of AF episodes in ECG signals, using RR intervals of the ECG signals and feeding them into artificial neural network (ANN) for classification, to compensate the defect of the computational complexity in traditional wearable ECG monitoring devices. In addition, we compared our proposed classifier with other popular classifiers. The model was trained and tested on the AF Termination Challenge Database and MIT-BIH Arrhythmia Database. Experimental results achieve the highest sensitivity of 99.3%, specificity of 97.4%, and accuracy of 98.3%, outperforming most of the others in the recent literature. Accordingly, we observe that ANN using RR intervals as an input feature can be a suitable candidate for automatic classification of AF.



2013 ◽  
Vol 433-435 ◽  
pp. 1388-1391 ◽  
Author(s):  
Wei Zhi Wang ◽  
Bing Han Liu

Traffic safety states can be divided into safe and dangerous according to the attributes of video images of traffic safety states. We propose a synergic neural network recognition model based on prototype pattern by analyzing various methods on intelligent video processing. Our proposed method realizes real time classification of traffic safety states with high accuracy of traffic safety states recognition. The experimental results validate that the accuracy of classification of proposed method arrives at 87.5%, increased by 16.2% compared to traditional neural network methods.



Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2710
Author(s):  
Ashish Shrestha ◽  
Ji Dang

In this study, a simple and customizable convolution neural network framework was used to train a vibration classification model that can be integrated into the measurement application in order to realize accurate and real-time bridge vibration status on mobile platforms. The inputs for the network model are basically the multichannel time-series signals acquired from the built-in accelerometer sensor of smartphones, while the outputs are the predefined vibration categories. To verify the effectiveness of the proposed framework, data collected from long-term monitoring of bridge were used for training a model, and its classification performance was evaluated on the test set constituting the data collected from the same bridge but not used previously for training. An iOS application program was developed on the smartphone for incorporating the trained model with predefined classification labels so that it can classify vibration datasets measured on any other bridges in real-time. The results justify the practical feasibility of using a low-latency, high-accuracy smartphone-based system amid which bottlenecks of processing large amounts of data will be eliminated, and stable observation of structural conditions can be promoted.



2021 ◽  
Vol 8 ◽  
Author(s):  
Jeonghoon Kim ◽  
Kyuyoung Lee ◽  
Ruwini Rupasinghe ◽  
Shahbaz Rezaei ◽  
Beatriz Martínez-López ◽  
...  

Porcine reproductive and respiratory syndrome is an infectious disease of pigs caused by PRRS virus (PRRSV). A modified live-attenuated vaccine has been widely used to control the spread of PRRSV and the classification of field strains is a key for a successful control and prevention. Restriction fragment length polymorphism targeting the Open reading frame 5 (ORF5) genes is widely used to classify PRRSV strains but showed unstable accuracy. Phylogenetic analysis is a powerful tool for PRRSV classification with consistent accuracy but it demands large computational power as the number of sequences gets increased. Our study aimed to apply four machine learning (ML) algorithms, random forest, k-nearest neighbor, support vector machine and multilayer perceptron, to classify field PRRSV strains into four clades using amino acid scores based on ORF5 gene sequence. Our study used amino acid sequences of ORF5 gene in 1931 field PRRSV strains collected in the US from 2012 to 2020. Phylogenetic analysis was used to labels field PRRSV strains into one of four clades: Lineage 5 or three clades in Linage 1. We measured accuracy and time consumption of classification using four ML approaches by different size of gene sequences. We found that all four ML algorithms classify a large number of field strains in a very short time (<2.5 s) with very high accuracy (>0.99 Area under curve of the Receiver of operating characteristics curve). Furthermore, the random forest approach detects a total of 4 key amino acid positions for the classification of field PRRSV strains into four clades. Our finding will provide an insightful idea to develop a rapid and accurate classification model using genetic information, which also enables us to handle large genome datasets in real time or semi-real time for data-driven decision-making and more timely surveillance.



2020 ◽  
Vol 17 (4) ◽  
pp. 497-506
Author(s):  
Sunil Patel ◽  
Ramji Makwana

Automatic classification of dynamic hand gesture is challenging due to the large diversity in a different class of gesture, Low resolution, and it is performed by finger. Due to a number of challenges many researchers focus on this area. Recently deep neural network can be used for implicit feature extraction and Soft Max layer is used for classification. In this paper, we propose a method based on a two-dimensional convolutional neural network that performs detection and classification of hand gesture simultaneously from multimodal Red, Green, Blue, Depth (RGBD) and Optical flow Data and passes this feature to Long-Short Term Memory (LSTM) recurrent network for frame-to-frame probability generation with Connectionist Temporal Classification (CTC) network for loss calculation. We have calculated an optical flow from Red, Green, Blue (RGB) data for getting proper motion information present in the video. CTC model is used to efficiently evaluate all possible alignment of hand gesture via dynamic programming and check consistency via frame-to-frame for the visual similarity of hand gesture in the unsegmented input stream. CTC network finds the most probable sequence of a frame for a class of gesture. The frame with the highest probability value is selected from the CTC network by max decoding. This entire CTC network is trained end-to-end with calculating CTC loss for recognition of the gesture. We have used challenging Vision for Intelligent Vehicles and Applications (VIVA) dataset for dynamic hand gesture recognition captured with RGB and Depth data. On this VIVA dataset, our proposed hand gesture recognition technique outperforms competing state-of-the-art algorithms and gets an accuracy of 86%



Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3995 ◽  
Author(s):  
Ning Liu ◽  
Ruomei Zhao ◽  
Lang Qiao ◽  
Yao Zhang ◽  
Minzan Li ◽  
...  

Potato is the world’s fourth-largest food crop, following rice, wheat, and maize. Unlike other crops, it is a typical root crop with a special growth cycle pattern and underground tubers, which makes it harder to track the progress of potatoes and to provide automated crop management. The classification of growth stages has great significance for right time management in the potato field. This paper aims to study how to classify the growth stage of potato crops accurately on the basis of spectroscopy technology. To develop a classification model that monitors the growth stage of potato crops, the field experiments were conducted at the tillering stage (S1), tuber formation stage (S2), tuber bulking stage (S3), and tuber maturation stage (S4), respectively. After spectral data pre-processing, the dynamic changes in chlorophyll content and spectral response during growth were analyzed. A classification model was then established using the support vector machine (SVM) algorithm based on spectral bands and the wavelet coefficients obtained from the continuous wavelet transform (CWT) of reflectance spectra. The spectral variables, which include sensitive spectral bands and feature wavelet coefficients, were optimized using three selection algorithms to improve the classification performance of the model. The selection algorithms include correlation analysis (CA), the successive projection algorithm (SPA), and the random frog (RF) algorithm. The model results were used to compare the performance of various methods. The CWT-SPA-SVM model exhibited excellent performance. The classification accuracies on the training set (Atrain) and the test set (Atest) were respectively 100% and 97.37%, demonstrating the good classification capability of the model. The difference between the Atrain and accuracy of cross-validation (Acv) was 1%, which showed that the model has good stability. Therefore, the CWT-SPA-SVM model can be used to classify the growth stages of potato crops accurately. This study provides an important support method for the classification of growth stages in the potato field.



Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.



Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4916
Author(s):  
Ali Usman Gondal ◽  
Muhammad Imran Sadiq ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
...  

Urbanization is a big concern for both developed and developing countries in recent years. People shift themselves and their families to urban areas for the sake of better education and a modern lifestyle. Due to rapid urbanization, cities are facing huge challenges, one of which is waste management, as the volume of waste is directly proportional to the people living in the city. The municipalities and the city administrations use the traditional wastage classification techniques which are manual, very slow, inefficient and costly. Therefore, automatic waste classification and management is essential for the cities that are being urbanized for the better recycling of waste. Better recycling of waste gives the opportunity to reduce the amount of waste sent to landfills by reducing the need to collect new raw material. In this paper, the idea of a real-time smart waste classification model is presented that uses a hybrid approach to classify waste into various classes. Two machine learning models, a multilayer perceptron and multilayer convolutional neural network (ML-CNN), are implemented. The multilayer perceptron is used to provide binary classification, i.e., metal or non-metal waste, and the CNN identifies the class of non-metal waste. A camera is placed in front of the waste conveyor belt, which takes a picture of the waste and classifies it. Upon successful classification, an automatic hand hammer is used to push the waste into the assigned labeled bucket. Experiments were carried out in a real-time environment with image segmentation. The training, testing, and validation accuracy of the purposed model was 0.99% under different training batches with different input features.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song-Quan Ong ◽  
Hamdan Ahmad ◽  
Gomesh Nair ◽  
Pradeep Isawasan ◽  
Abdul Hafiz Ab Majid

AbstractClassification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) by humans remains challenging. We proposed a highly accessible method to develop a deep learning (DL) model and implement the model for mosquito image classification by using hardware that could regulate the development process. In particular, we constructed a dataset with 4120 images of Aedes mosquitoes that were older than 12 days old and had common morphological features that disappeared, and we illustrated how to set up supervised deep convolutional neural networks (DCNNs) with hyperparameter adjustment. The model application was first conducted by deploying the model externally in real time on three different generations of mosquitoes, and the accuracy was compared with human expert performance. Our results showed that both the learning rate and epochs significantly affected the accuracy, and the best-performing hyperparameters achieved an accuracy of more than 98% at classifying mosquitoes, which showed no significant difference from human-level performance. We demonstrated the feasibility of the method to construct a model with the DCNN when deployed externally on mosquitoes in real time.



Sign in / Sign up

Export Citation Format

Share Document