scholarly journals A Successive Approximation Time-to-Digital Converter with Single Set of Delay Lines for Time Interval Measurements

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1109 ◽  
Author(s):  
Jakub Szyduczyński ◽  
Dariusz Kościelnik ◽  
Marek Miśkowicz

The paper is focused on design of time-to-digital converters based on successive approximation (SA-TDCs—Successive Approximation TDCs) using binary-scaled delay lines in the feedforward architecture. The aim of the paper is to provide a tutorial on successive approximation TDCs (SA-TDCs) on the one hand, and to make the contribution to optimization of SA-TDC design on the other. The proposed design optimization consists essentially in reduction of circuit complexity and die area, as well as in improving converter performance. The main paper contribution is the concept of reducing SA-TDC complexity by removing one of two sets of delay lines in the feedforward architecture at the price of simple output decoding. For 12 bits of resolution, the complexity reduction is close to 50%. Furthermore, the paper presents the implementation of 8-bit SA-TDC in 180 nm CMOS technology with a quantization step 25 ps obtained by asymmetrical design of pair of inverters and symmetrized multiplexer control.

2007 ◽  
Vol 16 (01) ◽  
pp. 1-14
Author(s):  
TASKIN KOCAK ◽  
GEORGE R. HARRIS ◽  
RONALD F. DEMARA

In this paper, a novel architecture for self-timed analog-to-digital conversion is presented and designed using the NULL Convention Logic (NCL) paradigm. This analog-to-digital converter (ADC) employs successive approximation and a one-hot encoded masking technique to digitize analog signals. The architecture scales readily to any given resolution by utilizing the one-hot encoded scheme to permit identical logical components for each bit of resolution. The four-bit configuration of the proposed design has been implemented and assessed via simulation in 0.18-μm CMOS technology. Furthermore, the ADC may be interfaced with either synchronous or four-phase asynchronous digital systems.


2015 ◽  
Vol 24 (09) ◽  
pp. 1550135 ◽  
Author(s):  
Mahdi Rezvanyvardom ◽  
Ebrahim Farshidi

This study investigates a novel approach for pipeline time-to-digital converters (TDCs) which employs analog interpolation and time stretching techniques for digitizing the time interval between two input signals as well as increasing resolution. In the proposed converter, analog interpolation is performed based on a triple-slope conversion. This converter will be a 9-bit pipeline TDC which contains three time stretching amplifiers (TSAs) and four 2.5-b/stage TDCs. This converter does not use delay lines in its structure. It features low circuit complexity, low sensitivity to temperature, power supply and process (PVT) variations and high accuracy compared with the TDCs which have previously been proposed. Also, the time resolution, the dynamic range and the linear range of the TDC are improved. The proposed structure reduces the active chip area, the power consumption and the figure of merit (FoM). In addition, the integral nonlinearity (INL) and the differential nonlinearity (DNL) errors are reduced. In order to evaluate the idea, the TDC is designed in TSMC 45-nm CMOS technology and simulated. Comparison of the theoretical and simulation results confirms the benefits of the proposed TDC.


1957 ◽  
Vol 35 (3) ◽  
pp. 324-331 ◽  
Author(s):  
W. A. Prowse ◽  
G. R. Bainbridge

A high voltage pulse lasting 0.35 microsecond is applied to a pair of delay lines, so that two pulses can be picked up from adjustable points of connection on the lines. One is applied to an irradiating gap and the other to a longer test gap, the gaps being so arranged that only mid-gap irradiation occurs. The sparking probability, P, of the test gap is used to indicate the presence of ionizing radiation. Variations of P with the time interval between the two pulses are recorded. They indicate that ionizing radiation is emitted in repeated short flashes. Photographic observations support this view.


2001 ◽  
Vol 34 (4) ◽  
pp. 1619
Author(s):  
T. M. TSAPANOS ◽  
O. CH. GALANIS ◽  
S. D. MAVRIDOU ◽  
M. P. HELMl

The Bayesian statistics is adopted in 11 seismic sources of Japan and 14 of Philippine in order to estimate the probabilities of occurrence of large future earthquakes, assuming that earthquakes occurrence follows the Poisson distribution. The Bayesian approach applied represents the probability that a certain cut-off magnitude (or larger) will exceed in a given time interval of 20 years, that is 1998-2017. This cut-off magnitude is chosen the one with M=7.0 or greater. In this case we can consider these obtained probabilities as a seismic hazard presentation. More over curves are produced which present the fluctuation of the seismic hazard between these seismic sources. These graphs of varying probability are useful either for engineering or other practical purposes


2018 ◽  
Vol 28 (02) ◽  
pp. 1950021
Author(s):  
B. Ghanavati ◽  
E. Abiri ◽  
M. R. Salehi ◽  
N. Azhdari

In this paper, a two-stage time interpolation time-to-digital converter (TDC) is proposed to achieve adequate resolution and wide dynamic range for measuring R-R intervals in QRS detection. The architecture is based on a coarse counter and a couple of two-stage interpolator circuit in order to improve the conversion linearity. The proposed TDC is modeled with the neural network, while the teacher–learner-based optimization algorithm (TLBO) is used to optimize the integral nonlinearity (INL) of the proposed TDC. The proposed optimization method shows a characteristic close to the ideal output of the TDC behavior over a wide input range. Using the achieved results of the TLBO algorithm simulation results using CADENCE VIRTUOSO and standard 180[Formula: see text]nm CMOS technology shows 1.2[Formula: see text]s dynamic range, 100[Formula: see text]ns resolution, 0.19[Formula: see text]mW power consumption and area of 0.16[Formula: see text]mm2. The proposed circuit can find application in biomedical engineering systems and other fields where long and accurate time interval measurement is needed.


2019 ◽  
Vol 102 ◽  
pp. 02006
Author(s):  
Ivan Postnikov ◽  
Andrey Penkovskii

The paper the one of current problem of transition of district heating systems (DHS) to the new type of intelligent and integrated systems. This problem is related to the implementation the technology of prosumer, which allows regulating its own heat loading ensuring the most efficiency heating modes by using its own heat sources (HS) and/or heat storages. The statement of considered problem is formulated as the search of the optimal loading relation between the own distributed HS of prosumer and the district HS of DHS, based on the criterion of minimal cost on heating to prosumer for each calculated time interval during the heating period. The practical researches based on calculating experiment using the test scheme of DHS is provided. The results of calculations are presented as diagram of prosumer’s and district HS loading for the considered DHS scheme, as well as the economic benefit when using distributed generation of prosumers.


In the previous paper of this series it was shown :— (1) that when nitrogen is added as a diluent to a mixture of 2CO+O 2 undergoing combustion in a bomb at an initial pressure of 50 atmospheres, it exerts a peculiar energy-absorbing influence upon the system, far beyond that of other diatomic gases, or of argon; (2) that by virtue of such influence, it retards the attainment of maximum pressure in a much greater degree than can be accounted for on the supposition of its acting merely as a diatomic diluent; (3) that the energy so absorbed by the nitrogen during the combustion period, which extends right up to the attainment of maximum pressure, is slowly liberated thereafter as the system cools down ; and that consequently the rate of cooling is greatly retarded for a considerable time interval after the attainment of maximum pressure; (4) that there is no such energy-absorbing effect ( i. e ., other than a purely "diluent" one) when nitrogen is present in a 2H 2 +O 2 mixture similarly undergoing combustion ; but that, on the contrary, the presence of hydrogen in a CO-air mixture undergoing combustion at such high pressures so strongly counteracts the said " energy-absorbing " influence of the nitrogen, that it must be excluded as far as possible from the system before any large nitrogen-effect can be observed. These facts were explained on the supposition that there is some constitutional correspondence between CO and N 2 molecules (whose densities are identical) whereby the vibrational energy (radiation) emitted when the one burns is of such a quality as can be readily absorbed by the other, the two thus acting in resonance. It was further supposed that, in consequence of such resonance, nitrogen becomes chemically " activated " when present during the combustion of carbon monoxide at such high pressures ; and in conformity with this supposition, it was shown that such "activated" nitrogen is able to combine with oxygen more readily than does nitrogen which has merely been raised to a correspondingly high temperature in a hydrogen-air explosion.


Sign in / Sign up

Export Citation Format

Share Document