scholarly journals Use of Time-Dependent Multispectral Representation of Magnetic Barkhausen Noise Signals for the Needs of Non-Destructive Evaluation of Steel Materials

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1443 ◽  
Author(s):  
Michal Maciusowicz ◽  
Grzegorz Psuj

Due to the existing relationship between microstructural properties and magnetic ones of the ferromagnetic materials, the application potential of the magnetic Barkhausen noise (BN) method to non-destructive testing is constantly growing. However, the stochastic nature of the Barkhausen effect requires the use of advanced signal processing methods. Recently, the need to apply time-frequency (TF) transformations to the processing of BN signals arose. However, various TF methods have been used in the majority of cases for qualitative signal conditioning and no extensive analysis of TF-based information has been conducted so far. Therefore, in this paper, the wide analysis of BN TF representation was carried out. Considering the properties of TF transformations, the Short-Time Fourier Transform (STFT) was used. A procedure for definition of the envelopes of the TF characteristic was proposed. To verify the quality of extracted features, an analysis was performed on the basis of BN signals acquired during stress loading experiments of steel elements. First, the preliminary experiments were processed for various parameters of the measuring system and calculation procedures. The feature extraction procedure was performed for different modes of TF representations. Finally, the distributions of TF features over the loading stages are presented and their information content was validated using commonly used features derived from time T and frequency F domains.

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3390 ◽  
Author(s):  
Michal Maciusowicz ◽  
Grzegorz Psuj

The paper presents a new approach to non-destructive evaluation of easy/hard magnetization axis in grain-oriented SiFe electrical steels based on the Barkhausen phenomenon and its time-frequency (TF) characteristics. Anisotropy in steels is influenced by a number of factors that formulate the global relationship and affect the Barkhausen effect. Due to the observed high variability in the dynamics of magnetic Barkhausen noise (MBN) over time, obtained for various directions in grain-oriented steel, it becomes justified to conduct MBN signal analyses in the time-frequency domain. This representation allows not only global information from MBN signal over entire period to be expressed, but also detailed relationships between properties in time and in frequency to be observed as well. This creates the opportunity to supplement the information obtained. The main aspect considered in the work is to present a procedure that allows an assessment of the resultant angular characteristics in steel. For this purpose, a sample of a conventional grain-oriented SiFe sheet was used. Measurements were made for several angular settings towards the rolling and transverse directions. A data transformation procedure based on short-time Fourier transform (STFT) as well as quantitative analysis and synthesis of information contained in the TF space was presented. Angular characteristics of selected TF parameters were shown and discussed. In addition, an analysis of the repeatability of information obtained using the proposed procedure under various measurement conditions was carried out. The relationship between the selection of calculation parameters used during transformation and the repeatability of the obtained TF distributions were demonstrated. Then the selection of the final values of the calculation parameters was commented upon. Finally, the conclusions of the work carried out were discussed.


2014 ◽  
Vol 490-491 ◽  
pp. 351-357
Author(s):  
Liang Yin ◽  
Di Shu ◽  
Juan Chen ◽  
Xin Qi

The experiment shows that the Magnetic Barkhausen Noise (MBN) signal strongly depends on the elastic deformation, heat treatment state of surface and microstructure of the material, etc. Using the MBN technology that rely on the material characteristics, MBN can be used for testing the surface hardness of 60kg/m U74 seamless rail made by China Harbin welded rail plant. And the testing result obtained by the MBN method is consistent with the results obtained by the Brinell hardness (HB) method. Consequently, this non-destructive testing technique will have a strong life and an extensive market.


2014 ◽  
Vol 605 ◽  
pp. 633-636
Author(s):  
Kaliopi Hliadi

The impact of stress on changes in magnetization is one of the most complex issues of magnetism. Magnetic techniques are the most important non-destructive testing technologies to characterize the mechanical features of ferromagnetic materials based on the physical principle of magnetic-stress coupling. Magnetic Barkhausen Noise measurement was used in order to estimate stress state in boat welding. The results have shown that magnetic properties of ferromagnetic materials are stress-dependent. A qualitative correlation was found between places with residual stress and areas with increased values of the gradients of the magnetic Barkhausen noise components. Further research is now in progress in order to develop the quantitative relationships.


2021 ◽  
Vol 63 (7) ◽  
pp. 427-435
Author(s):  
Junyang Tan ◽  
Dan Xia ◽  
Shiyun Dong ◽  
Honghao Zhu ◽  
Binshi Xu

Tensile strength (TS) is an important mechanical property of a material. The conventional mechanical measurement method destroys the object under investigation; hence, the non-destructive evaluation of tensile strength of materials has become a research hotspot in recent years. Currently, there are some accuracy problems associated with evaluating the tensile strength of materials on the basis of single non-destructive testing (NDT) methods such as ultrasonic or electromagnetic methods. In this study, 45 steel is used as an example to study various non-destructive testing methods. First, seven different heat treatment systems are used to prepare standard specimens with different tensile strengths, which are measured by tensile tests. Second, non-destructive testing signals for each specimen are obtained as ultrasonic signals, magnetic Barkhausen noise and magnetic hysteresis signals, and the characteristic parameters of the signals are extracted. Then, single-parameter non-destructive evaluation (SNE) models of tensile strength with three different non-destructive testing methods are developed. Furthermore, a multivariate non-destructive evaluation (MNE) method based on ultrasonic signals, magnetic Barkhausen noise and magnetic hysteresis is proposed to improve the accuracy of the tensile strength measurements obtained from non-destructive testing. A deep residual network (ResNet) is used to combine the features of the three non-destructive testing parameters and an MNE model of tensile strength is developed. Moreover, a data pretreatment method based on the fuzzy mapping relationship is applied to train the MNE model successfully and enhance the stability, accuracy and reliability of the obtained results. Finally, the accuracies of the above four tensile strength evaluation models are confirmed by verification using the specimens. The results show that the MNE model has higher accuracy than the SNE models.


2014 ◽  
Vol 605 ◽  
pp. 641-644
Author(s):  
Anastasia Karahaliou

Non-destructive testing methods, such as Magnetic Barkhausen Noise method, are widely used on railways for examining the stress state of running railway rails. Detailed information about the morphology of the microstructure features of the rail surface is derived by Scanning Electron Microscopy. Phase composition, hardness and residual stress state of the rails are determined by MBN signal.


2014 ◽  
Vol 936 ◽  
pp. 1576-1581
Author(s):  
He Chi Yin ◽  
Lan Zhou ◽  
Zhen Sheng Wang ◽  
Chun Bo Cai

Magnetic Barkhausen noise (MBN) is a new technique on non-destructive testing of residual stress. The testing system based on virtual instrument was explored. It can achieve the MBN and deal with it in time. The technique is applied to analyze residual stress in the welding line of iron materials back and forth the heat treatment. Through comparing with the data of blind-hole method, the corresponding change between Barkhausen signals and residual stress is verified.


2020 ◽  
Vol 91 (12) ◽  
pp. 17-24
Author(s):  
Michał Paweł Maciusowicz ◽  
Grzegorz Psuj

The effectiveness of the magnetic Barkhausen noise method (MBN), used for non-destructive testing of ferromagnetic materials, depends to a large extent on a number of factors determining the measurement conditions. The use of conditions allowing the highest possible level of discrimination between the various states of the materials state is of highest importance. Therefore, this paper presents an analysis of the impact of measurement conditions on Barkhausen noise signals observed for various states of the material conditions. Taking into consideration the stochastic nature of MBN and the complex characterization of its changes, the analysis was based on the time-frequency representation of the MBN signal. The paper presents selected distributions achieved using two transformation methods. In addi- tion, the extraction methods of features allowing the quantification of complex information were given. Finally, the discrimination ability for a number of parameters and features of MBN signals were deter- mined and the obtained results were discussed.


2011 ◽  
Vol 495 ◽  
pp. 272-275
Author(s):  
Panagiotis Skafidas

A magnetic-based nondestructive evaluation (NDE) method, which employs Barkhausen effect and measurement of hysteresis loops, is developed and used to correlate the magnetic and mechanical properties. The NDE test equipment offers the capability to detect small deviations from linearity that occur in the stress-strain curve.


Sign in / Sign up

Export Citation Format

Share Document