scholarly journals TSCH Evaluation under Heterogeneous Mobile Scenarios

IoT ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 656-668
Author(s):  
Charalampos Orfanidis ◽  
Atis Elsts ◽  
Paul Pop ◽  
Xenofon Fafoutis

Time Slotted Channel Hopping (TSCH) is a medium access protocol defined in the IEEE 802.15.4 standard. It has proven to be one of the most reliable options when it comes to industrial applications. TSCH offers a degree of high flexibility and can be tailored to the requirements of specific applications. Several performance aspects of TSCH have been investigated so far, such as the energy consumption, reliability, scalability and many more. However, mobility in TSCH networks remains an aspect that has not been thoroughly explored. In this paper, we examine how TSCH performs under mobility situations. We define two mobile scenarios: one where autonomous agriculture vehicles move on a predefined trail, and a warehouse logistics scenario, where autonomous robots/vehicles and workers move randomly. We examine how different TSCH scheduling approaches perform on these mobility patterns and when a different number of nodes are operating. The results show that the current TSCH scheduling approaches are not able to handle mobile scenarios efficiently. Moreover, the results provide insights on how TSCH scheduling can be improved for mobile applications.

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1789 ◽  
Author(s):  
Apostolos Karalis ◽  
Dimitrios Zorbas ◽  
Christos Douligeris

IEEE802.15.4-time slotted channel hopping (TSCH) is a medium access control (MAC) protocol designed to support wireless device networking, offering high reliability and low power consumption, two features that are desirable in the industrial internet of things (IIoT). The formation of an IEEE802.15.4-TSCH network relies on the periodic transmissions of network advertising frames called enhanced beacons (EB). The scheduling of EB transmissions plays a crucial role both in the joining time and in the power consumption of the nodes. The existence of collisions between EB is an important factor that negatively affects the performance. In the worst case, all the neighboring EB transmissions of a node may collide, a phenomenon which we call a full collision. Most of the EB scheduling methods that have been proposed in the literature are fully or partially based on randomness in order to create the EB transmission schedule. In this paper, we initially show that the randomness can lead to a considerable probability of collisions, and, especially, of full collisions. Subsequently, we propose a novel autonomous EB scheduling method that eliminates collisions using a simple technique that does not increase the power consumption. To the best of our knowledge, our proposed method is the first non-centralized EB scheduling method that fully eliminates collisions, and this is guaranteed even if there are mobile nodes. To evaluate our method, we compare our proposal with recent and state-of-the-art non-centralized network-advertisement scheduling methods. Our evaluation does not consider only fixed topology networks, but also networks with mobile nodes, a scenario which has not been examined before. The results of our simulations demonstrate the superiority of our method in terms of joining time and energy consumption.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 126 ◽  
Author(s):  
Filippo Battaglia ◽  
Mario Collotta ◽  
Luca Leonardi ◽  
Lucia Lo Bello ◽  
Gaetano Patti

The Deterministic and Synchronous Multichannel Extension (DSME) of the IEEE 802.15.4 standard was designed to fulfill the requirements of commercial and industrial applications. DSME overcomes the IEEE 802.15.4 limitation on the maximum number of Guaranteed Time Slots (GTS) in a superframe and it also exploits channel diversity to increase the communication reliability. However, DSME suffers from scalability problems, as its multi-superframe structure does not efficiently handle GTS in networks with a high number of nodes and periodic flows. This paper proposes the enhanceD DSME (D-DSME), which consists of two extensions that improve the DSME scalability and reliability exploiting a GTS within the multi-superframe to accommodate multiple flows or multiple retransmissions of the same flow. The paper describes the proposed extensions and the performance results of both OMNeT simulations and experiments with real devices implementing the D-DSME.


2020 ◽  
Vol 17 (1) ◽  
pp. 363-372
Author(s):  
K. M. Martin ◽  
B. Seetha Ramanjaneyulu

To meet the growing demands of low power and determinism in Industrial Wireless applications, IEEE defined IEEE 802.15.4e amendment that includes many channel access methods. Time Slotted Channel Hopping protocol is one of the most popular MAC protocols under IEEE 802.15.4e. However, scheduling of time slots for time slotted channel hopping, was not part of the protocol and so different scheduling algorithms were proposed by researchers. A new time slotted channel hopping scheduling mechanism that considers priorities to meet the time critical industrial applications is proposed in this work. Latency improvements of about 40 percentage are obtained here, for slot allocations to higher priority devices, when compared with the conventional queuing methods.


2013 ◽  
Vol 465-466 ◽  
pp. 769-773
Author(s):  
Aftab Ahmed ◽  
Khalid Hasnan ◽  
Badrul Aisham ◽  
Qadir Bakhsh

Value stream mapping (VSM) significantly monitored by integrating radio frequency identification (RFID), wireless sensor network (WSN), ZigBee wireless technologies and Labview Graphical user interface (GUI). These technologies are used for identifying, sensing, positioning, multi-hop communication and real time locating system (RTLS). Combined effect of above technologies will optimize labor and operations cost, minimize human error; improve environmental performance and information accuracy. ZigBee protocol IEEE 802.15.4 standard has been used as wireless network in variety of commercial and industrial applications. The range of tracking of RFID reader enhanced with ZigBee coordinator through ZigBee router, which overcomes the range of radio areas that do not reach signals from the RFID reader. The proposed system provides richer information of objects location, identification and their environmental status like temperature and moisture.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6047
Author(s):  
Marcos A. Sordi ◽  
Ohara K. Rayel ◽  
Guilherme L. Moritz ◽  
João L. Rebelatto

The IEEE 802.15.4-2015 standard defines a number of Medium Access Control (MAC) layer protocols for low power wireless communications, which are desirable for energy-constrained Internet of Things (IoT) devices. Originally defined in the IEEE 802.15.4e amendment, the Time Slotted Channel Hopping (TSCH) has recently been attracting attention from the research community due to its reduced contention (time scheduling) and robustness against fading (channel hopping). However, it requires a certain level of synchronization between the nodes, which can increase the energy consumption. In this work, we implement the Guard Beacon (GB) strategy, aiming at reducing the guard time usually implemented to compensate for imperfect synchronization. Moreover, besides presenting a realistic energy consumption model for a Contiki Operating System-based TSCH network, we show through analytical and practical results that, without the proposed scheme, the power consumption can be more than 13% higher.


Author(s):  
Dhanya. T

ZigBee is an IEEE 802.15.4 standard for information interchanges with business and purchaser gadgets. It is composed around low-control utilization permitting batteries to keep going forever. The ZigBee standard gives system, security, and application bolster administrations working on top of the IEEE 802.15.4 Medium Access Control (MAC) and Physical Layer (PHY) remote standard. It utilizes a suite of innovations to empower adaptable, self-arranging, self-mending systems that can oversee different information movement designs. ZigBee is an ease, low-control, remote lattice organizing standard. The ease permits the innovation to be broadly sent in remote control and observing applications, the low power-use permits longer an existence with little batteries, and the cross-section systems administration gives high dependability and bigger range.ZigBee has been created to take care of the developing demand for able remote systems administration between various low power. In industry ZigBee is being utilized for cutting-edge robotized assembling, with little transmitters in each gadget on the floor, taking into consideration correspondence between devices to a focal PC. This new level of communication allows finely-tuned remote observing and control.


2022 ◽  
Vol 22 (2) ◽  
pp. 1-26
Author(s):  
Nikumani Choudhury ◽  
Rakesh Matam ◽  
Mithun Mukherjee ◽  
Jaime Lloret

The IEEE 802.15.4 standard is one of the widely adopted specifications for realizing different applications of the Internet of Things. It defines several physical layer options and Medium Access Control (MAC) sub-layer for devices with low-power operating at low data rates. As devices implementing this standard are primarily battery-powered, minimizing their power consumption is a significant concern. Duty-cycling is one such power conserving mechanism that allows a device to schedule its active and inactive radio periods effectively, thus preventing energy drain due to idle listening. The standard specifies two parameters, beacon order and superframe order, which define the active and inactive period of a device. However, it does not specify a duty-cycling scheme to adapt these parameters for varying network conditions. Existing works in this direction are either based on superframe occupation ratio or buffer/queue length of devices. In this article, the particular limitations of both the approaches mentioned above are presented. Later, a novel duty-cycling mechanism based on MAC parameters is proposed. Also, we analyze the role of synchronization schemes in achieving efficient duty-cycles in synchronized cluster-tree network topologies. A Markov model has also been developed for the MAC protocol to estimate the delay and energy consumption during frame transmission.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2493
Author(s):  
Mohamed Osman ◽  
Frederic Nabki

Today’s wireless sensor networks expect to receive increasingly more data from different sources. The Time Slotted Channel Hopping (TSCH) protocol defined in the IEEE 802.15.4-2015 version of the IEEE 802.15.4 standard plays a crucial role in reducing latency and minimizing energy consumption. In the case of convergecast traffic, nodes close to the root have consistently heavy traffic and suffer from severe network congestion problems. In this paper, we propose OSCAR, an novel autonomous scheduling TSCH cell allocation algorithm based on Orchestra. This new design differs from Orchestra by allocating slots according to the location of the node relative to the root. The goal of this algorithm is to allocate slots to nodes according to their needs. This algorithm manages the number of timeslots allocated to each node using the value of the rank described by the RPL routing protocol. The goal is that the closer the node is to the root, the more slots it gets in order to maximize the transmission opportunities. To avoid overconsumption, OSCAR sets up a mechanism to adjust the radio duty cycle of each node by reducing the slots allocated to inactive nodes regardless of their position in the network. We implement OSCAR on Contiki-ng and evaluate its performance by both simulations and experimentation. The performance assessment of OSCAR shows that it outperforms Orchestra on the average latency and reliability, without significantly increasing the average duty cycle, especially when the traffic load is high.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1691
Author(s):  
Robbe Elsas ◽  
Jeroen Hoebeke ◽  
Dries Van Leemput ◽  
Adnan Shahid ◽  
Glenn Daneels ◽  
...  

While IEEE 802.15.4 and its Time Slotted Channel Hopping (TSCH) medium access mode were developed as a wireless substitute for reliable process monitoring in industrial environments, most deployments use a single/static physical layer (PHY) configuration. Instead of limiting all links to the throughput and reliability of a single Modulation and Coding Scheme (MCS), you can dynamically re-configure the PHY of link endpoints according to the context. However, such modulation diversity causes links to coincide in time/frequency space, resulting in poor reliability if left unchecked. Nonetheless, to some level, intentional spatial overlap improves resource efficiency while partially preserving the benefits of modulation diversity. Hence, we measured the mutual interference robustness of certain Smart Utility Network (SUN) Orthogonal Frequency Division Multiplexing (OFDM) configurations, as a first step towards combining spatial re-use and modulation diversity. This paper discusses the packet reception performance of those PHY configurations in terms of Signal to Interference Ratio (SIR) and time-overlap percentage between interference and targeted parts of useful transmissions. In summary, we found SUN-OFDM O3 MCS1 and O4 MCS2 performed best. Consequently, one should consider them when developing TSCH scheduling mechanisms in the search for resource efficient ubiquitous connectivity through modulation diversity and spatial re-use.


Sign in / Sign up

Export Citation Format

Share Document