scholarly journals Fabrication and Applications of Solid-State Nanopores

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1886 ◽  
Author(s):  
Qi Chen ◽  
Zewen Liu

Nanopores fabricated from synthetic materials (solid-state nanopores), platforms for characterizing biological molecules, have been widely studied among researchers. Compared with biological nanopores, solid-state nanopores are mechanically robust and durable with a tunable pore size and geometry. Solid-state nanopores with sizes as small as 1.3 nm have been fabricated in various films using engraving techniques, such as focused ion beam (FIB) and focused electron beam (FEB) drilling methods. With the demand of massively parallel sensing, many scalable fabrication strategies have been proposed. In this review, typical fabrication technologies for solid-state nanopores reported to date are summarized, with the advantages and limitations of each technology discussed in detail. Advanced shrinking strategies to prepare nanopores with desired shapes and sizes down to sub-1 nm are concluded. Finally, applications of solid-state nanopores in DNA sequencing, single molecule detection, ion-selective transport, and nanopatterning are outlined.

Author(s):  
Jian Ma ◽  
Weiwei Zhao ◽  
Lei Liu ◽  
Jingjie Sha ◽  
Yunfei Chen

Solid-state nanopore has already shown success of single molecule detection and graphene nanopore is potential for successful DNA sequencing. Here, we present a fast and controllable way to fabricate sub-5 nm nanopore on graphene membrane. The process includes two steps: sputtering a large size nanopore using a conventional focused ion beam (FIB) and shrinking the large nanopore to a few nanometers using scanning electron microscope (SEM). We also demonstrated the ability of the graphene nanopores fabricated in this manner to detect individual 48Kbp λ-DNA molecules.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Seong Soo Choi ◽  
◽  
Byung Seong Bae ◽  
Kyoung Jin Kim ◽  
Myoug Jin Park ◽  
...  

We fabricated various nanoaperture plasmonic platforms for single-molecule detection. We fabricated nanoapertures like nanopores on a pyramid and nanoslits on an Au flat membrane using a Ga ion focused ion beam drilling technique, followed by irradiating with a high energy electron beam, dependent on the electron beam current density to obtain nanoapertures with a few nanometer sizes (circular nanopore, nanoslit pores). We examined their optical characteristics with varying aperture sizes and sample thicknesses. We obtained broad emission spectra in the visible and infrared region from the (7 x 7) slit array and a sharp, strong infrared emission peak from the Au nanoparticle on the substrate. The fabricated Au platform with ~10 nm nanometer opening can be employed as a single-molecule sensor and an infrared thermal emission device.


Author(s):  
H.J. Ryu ◽  
A.B. Shah ◽  
Y. Wang ◽  
W.-H. Chuang ◽  
T. Tong

Abstract When failure analysis is performed on a circuit composed of FinFETs, the degree of defect isolation, in some cases, requires isolation to the fin level inside the problematic FinFET for complete understanding of root cause. This work shows successful application of electron beam alteration of current flow combined with nanoprobing for precise isolation of a defect down to fin level. To understand the mechanism of the leakage, transmission electron microscopy (TEM) slice was made along the leaky drain contact (perpendicular to fin direction) by focused ion beam thinning and lift-out. TEM image shows contact and fin. Stacking fault was found in the body of the silicon fin highlighted by the technique described in this paper.


Author(s):  
P. Perdu ◽  
G. Perez ◽  
M. Dupire ◽  
B. Benteo

Abstract To debug ASIC we likely use accurate tools such as an electron beam tester (Ebeam tester) and a Focused Ion Beam (FIB). Interactions between ions or electrons and the target device build charge up on its upper glassivation layer. This charge up could trigger several problems. With Ebeam testing, it sharply decreases voltage contrast during Image Fault Analysis and hide static voltage contrast. During ASIC reconfiguration with FIB, it could induce damages in the glassivation layer. Sample preparation is getting a key issue and we show how we can deal with it by optimizing carbon coating of the devices. Coating is done by an evaporator. For focused ion beam reconfiguration, we need a very thick coating. Otherwise the coating could be sputtered away due to imaging. This coating is use either to avoid charge-up on glassivated devices or as a sacrificial layer to avoid short circuits on unglassivated devices. For electron beam Testing, we need a very thin coating, we are now using an electrical characterization method with an insitu control system to obtain the right thin thickness. Carbon coating is a very cheap and useful method for sample preparation. It needs to be tuned according to the tool used.


Nanoscale ◽  
2021 ◽  
Author(s):  
Nasim Farajpour ◽  
Lauren Lastra ◽  
Vinay Sharma ◽  
Kevin Freedman

Nanopore sensing is a promising tool with widespread application in single-molecule detection. Borosilicate glass nanopores are a viable alternative to other solid-state nanopores due to low noise and cost-efficient fabrication....


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1572
Author(s):  
Nik Noor Nabilah Md Ibrahim ◽  
Abdul Manaf Hashim

A biosensor formed by a combination of silicon (Si) micropore and graphene nanohole technology is expected to act as a promising device structure to interrogate single molecule biopolymers, such as deoxyribonucleic acid (DNA). This paper reports a novel technique of using a focused ion beam (FIB) as a tool for direct fabrication of both conical-shaped micropore in Si3N4/Si and a nanohole in graphene to act as a fluidic channel and sensing membrane, respectively. The thinning of thick Si substrate down to 50 µm has been performed prior to a multi-step milling of the conical-shaped micropore with final pore size of 3 µm. A transfer of graphene onto the fabricated conical-shaped micropore with little or no defect was successfully achieved using a newly developed all-dry transfer method. A circular shape graphene nanohole with diameter of about 30 nm was successfully obtained at beam exposure time of 0.1 s. This study opens a breakthrough in fabricating an integrated graphene nanohole and conical-shaped Si micropore structure for biosensor applications.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Michal Horák ◽  
Kristýna Bukvišová ◽  
Vojtěch Švarc ◽  
Jiří Jaskowiec ◽  
Vlastimil Křápek ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 588
Author(s):  
Chaorong Zhong ◽  
Ruijuan Qi ◽  
Yonghui Zheng ◽  
Yan Cheng ◽  
Wenxiong Song ◽  
...  

Depositing platinum (Pt) interconnectors during the sample preparation process via a focused ion beam (FIB) system is an inescapable procedure for in situ transmission electron microscopy (TEM) investigations. To achieve good electrical contact and avoid irreversible damage in practical samples, the microscopic evolution mechanism of FIB-deposited Pt interconnectors need a more comprehensive understanding, though it is known that its resistivity could be affected by thermal annealing. In this work, an electron-beam FIB-deposited Pt interconnector was studied by advanced spherical aberration (Cs)-corrected TEM combined with an in situ heating and biasing system to clarify the relationship of microscopic evolution to resistivity variation. During the heating process, the Pt interconnector underwent crystallization, organic matter decomposition, Pt nanocrystal growth, grain connection, and conductive path formation, which are combined actions to cause several orders of magnitude of resistivity reduction. The comprehensive understanding of the microscopic evolution of FIB-deposited Pt material is beneficial, not only for optimizing the resistance performance of Pt as an interconnector, but also for understanding the role of C impurities with metal materials. For the purpose of wiring, annealed electron-beam (EB)-deposited Pt material can be recommended for use as an interconnector in devices for research purposes.


Sign in / Sign up

Export Citation Format

Share Document