scholarly journals The Relationships of Microscopic Evolution to Resistivity Variation of a FIB-Deposited Platinum Interconnector

Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 588
Author(s):  
Chaorong Zhong ◽  
Ruijuan Qi ◽  
Yonghui Zheng ◽  
Yan Cheng ◽  
Wenxiong Song ◽  
...  

Depositing platinum (Pt) interconnectors during the sample preparation process via a focused ion beam (FIB) system is an inescapable procedure for in situ transmission electron microscopy (TEM) investigations. To achieve good electrical contact and avoid irreversible damage in practical samples, the microscopic evolution mechanism of FIB-deposited Pt interconnectors need a more comprehensive understanding, though it is known that its resistivity could be affected by thermal annealing. In this work, an electron-beam FIB-deposited Pt interconnector was studied by advanced spherical aberration (Cs)-corrected TEM combined with an in situ heating and biasing system to clarify the relationship of microscopic evolution to resistivity variation. During the heating process, the Pt interconnector underwent crystallization, organic matter decomposition, Pt nanocrystal growth, grain connection, and conductive path formation, which are combined actions to cause several orders of magnitude of resistivity reduction. The comprehensive understanding of the microscopic evolution of FIB-deposited Pt material is beneficial, not only for optimizing the resistance performance of Pt as an interconnector, but also for understanding the role of C impurities with metal materials. For the purpose of wiring, annealed electron-beam (EB)-deposited Pt material can be recommended for use as an interconnector in devices for research purposes.

2016 ◽  
Vol 23 (2) ◽  
pp. 321-328 ◽  
Author(s):  
David R. Diercks ◽  
Brian P. Gorman ◽  
Johannes J. L. Mulders

AbstractSix precursors were evaluated for use as in situ electron beam-induced deposition capping layers in the preparation of atom probe tomography specimens with a focus on near-surface features where some of the deposition is retained at the specimen apex. Specimens were prepared by deposition of each precursor onto silicon posts and shaped into sub-70-nm radii needles using a focused ion beam. The utility of the depositions was assessed using several criteria including composition and uniformity, evaporation behavior and evaporation fields, and depth of Ga+ ion penetration. Atom probe analyses through depositions of methyl cyclopentadienyl platinum trimethyl, palladium hexafluoroacetylacetonate, and dimethyl-gold-acetylacetonate [Me2Au(acac)] were all found to result in tip fracture at voltages exceeding 3 kV. Examination of the deposition using Me2Au(acac) plus flowing O2 was inconclusive due to evaporation of surface silicon from below the deposition under all analysis conditions. Dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9] depositions were found to be effective as in situ capping materials for the silicon specimens. Their very different evaporation fields [36 V/nm for Co2(CO)8 and 21 V/nm for Fe2(CO)9] provide options for achieving reasonably close matching of the evaporation field between the capping material and many materials of interest.


2010 ◽  
Vol 241 ◽  
pp. 012072 ◽  
Author(s):  
I Utke ◽  
M Gabureac ◽  
V Friedli ◽  
L Bernau ◽  
J Michler

Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
H.J. Ryu ◽  
A.B. Shah ◽  
Y. Wang ◽  
W.-H. Chuang ◽  
T. Tong

Abstract When failure analysis is performed on a circuit composed of FinFETs, the degree of defect isolation, in some cases, requires isolation to the fin level inside the problematic FinFET for complete understanding of root cause. This work shows successful application of electron beam alteration of current flow combined with nanoprobing for precise isolation of a defect down to fin level. To understand the mechanism of the leakage, transmission electron microscopy (TEM) slice was made along the leaky drain contact (perpendicular to fin direction) by focused ion beam thinning and lift-out. TEM image shows contact and fin. Stacking fault was found in the body of the silicon fin highlighted by the technique described in this paper.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
H. Lorenz ◽  
C. Engel

Abstract Due to the continuously decreasing cell size of DRAMs and concomitantly diminishing thickness of some insulating layers new failure mechanisms appear which until now had no significance for the cell function. For example high resistance leakage paths between closely spaced conductors can lead to retention problems. These are hard to detect by electrical characterization in a memory tester because the involved currents are in the range of pA. To analyze these failures we exploit the very sensitive passive voltage contrast of the Focused Ion Beam Microscope (FIB). The voltage contrast can further be enhanced by in-situ FIB preparations to obtain detailed information about the failure mechanism. The first part of this paper describes a method to detect a leakage path between a borderless contact on n-diffusion and an adjacent floating gate by passive voltage contrast achieved after FIB circuit modification. In the second part we will demonstrate the localization of a DRAM trench dielectric breakdown. In this case the FIB passive voltage contrast technique is not limited to the localization of the failing trench. We can also obtain the depth of the leakage path by selective insitu etching with XeF2 stopped immediately after a voltage contrast change.


Author(s):  
Gunnar Zimmermann ◽  
Richard Chapman

Abstract Dual beam FIBSEM systems invite the use of innovative techniques to localize IC fails both electrically and physically. For electrical localization, we present a quick and reliable in-situ FIBSEM technique to deposit probe pads with very low parasitic leakage (Ipara < 4E-11A at 3V). The probe pads were Pt, deposited with ion beam assistance, on top of highly insulating SiOx, deposited with electron beam assistance. The buried plate (n-Band), p-well, wordline and bitline of a failing and a good 0.2 μm technology DRAM single cell were contacted. Both cells shared the same wordline for direct comparison of cell characteristics. Through this technique we electrically isolated the fail to a single cell by detecting leakage between the polysilicon wordline gate and the cell diffusion. For physical localization, we present a completely in-situ FIBSEM technique that combines ion milling, XeF2 staining and SEM imaging. With this technique, the electrically isolated fail was found to be a hole in the gate oxide at the bad cell.


Author(s):  
P. Perdu ◽  
G. Perez ◽  
M. Dupire ◽  
B. Benteo

Abstract To debug ASIC we likely use accurate tools such as an electron beam tester (Ebeam tester) and a Focused Ion Beam (FIB). Interactions between ions or electrons and the target device build charge up on its upper glassivation layer. This charge up could trigger several problems. With Ebeam testing, it sharply decreases voltage contrast during Image Fault Analysis and hide static voltage contrast. During ASIC reconfiguration with FIB, it could induce damages in the glassivation layer. Sample preparation is getting a key issue and we show how we can deal with it by optimizing carbon coating of the devices. Coating is done by an evaporator. For focused ion beam reconfiguration, we need a very thick coating. Otherwise the coating could be sputtered away due to imaging. This coating is use either to avoid charge-up on glassivated devices or as a sacrificial layer to avoid short circuits on unglassivated devices. For electron beam Testing, we need a very thin coating, we are now using an electrical characterization method with an insitu control system to obtain the right thin thickness. Carbon coating is a very cheap and useful method for sample preparation. It needs to be tuned according to the tool used.


Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


Sign in / Sign up

Export Citation Format

Share Document