scholarly journals Versatile Tunable Voltage-Mode Biquadratic Filter and Its Application in Quadrature Oscillator

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2349 ◽  
Author(s):  
San-Fu Wang ◽  
Hua-Pin Chen ◽  
Yitsen Ku ◽  
Yi-Chun Lin

This paper presents a versatile tunable voltage-mode biquadratic filter with five inputs and three outputs. The proposed filter enjoys five single-ended output operational transconductance amplifiers (OTAs) and two grounded capacitors. The filter can be easily transformed into a quadrature oscillator. The filter with grounded capacitors is resistorless and electronically tunable. Either a voltage-mode five-input single-output biquadratic filter or a voltage-mode single-input three-output biquadratic filter can be operated by appropriate selecting input and output terminals. In the operation of five-input single-output biquadratic filter, the non-inverting lowpass, non-inverting bandpass, inverting bandpass, inverting highpass, non-inverting bandreject, inverting bandreject, and non-inverting allpass filtering responses can be realized by appropriately applying the input voltage signals. In the operation of single-input three-output biquadratic filter, the non-inverting/inverting lowpass, bandpass and bandreject filtering responses can be realized simultaneously. The circuit provides independent adjustment of the resonance angular frequency and quality factor, high-input impedance, and no inverting-type input voltage signals are imposed. The application in quadrature oscillator exhibits independent electronic tuning characteristic of the oscillation condition and the oscillation frequency. The theoretical analysis has been verified through OrCAD PSpice and furthermore by experimental measurements.

Author(s):  
May Phu Pwint Wai ◽  
Winai Jaikla ◽  
Surapong Siripongdee ◽  
Amornchai Chaichana ◽  
Peerawut Suwanjan

This study aims to design an electronically tunable voltage-mode (VM) universal filter utilizing commercially available LT1228 integrated circuits (ICs) with three-input and single-output (TISO) configuration. With the procedure based on two integrator loop filtering structures, the proposed filter consists of two LT1228s, four resistors, and two grounded capacitors. It realizes five filter output responses: low-pass, all-pass, band-reject, band-pass, and high-pass functions. By selecting input voltage signals, each output responses can be achieved without changing the circuit architecture. The natural angular frequency can be controlled electronically. The input voltage nodes Vin1 and Vin3 possess high impedance. The output node has low impedance, so it can be cascaded to other circuits. The performance of the proposed filter is corroborated by PSpice simulation and hardware implementation which support the theoretical assumptions. The result shows that the range of total harmonic distortion (THD) is lower than 1%, and that the higher the temperature is, the lower the natural angular frequency is.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
K. L. Pushkar ◽  
D. R. Bhaskar ◽  
Dinesh Prasad

A new multiple-input single-output-(MISO-)-type multifunction voltage-mode universal biquadratic filter employing single voltage differencing differential input buffered amplifier (VD-DIBA), two capacitors, and one resistor are proposed. The proposed structure can realize second-order low pass, high pass, band pass, band stop, and all pass filter responses without altering the circuit topology. The proposed new filter configuration also provides the following advantageous features, not available simultaneously in any of the single active device /element-based universal biquad in realizing all the five filter functions known earlier so far: (i) no requirement of any passive component(s) matching condition or inversion of input signal(s), (ii) independent electronic control of angular frequency () and bandwidth (BW), and (iii) low active and passive sensitivities. SPICE simulation results have been included using 0.35 µm TSMC technology to confirm the validity of the proposed new universal biquadratic filter configuration.


2021 ◽  
Vol 11 (2) ◽  
pp. 146-160
Author(s):  
Suvajit Roy ◽  
Tapas Kumar Paul ◽  
Saikat Maiti ◽  
Radha Raman Pal

The objective of this study is to present four new universal biquad filters, two voltage-mode multi-input-single-output (MISO), and two current-mode single-input-multi-output (SIMO). The filters employ one voltage differencing current conveyor (VDCC) as an active element and two capacitors along with two resistors as passive elements. All the five filter responses, i.e., high-pass, low-pass, band-pass, band-stop, and all-pass responses, are obtained from the same circuit topology. Moreover, the pole frequency and quality factor are independently tunable. Additionally, they do not require any double/inverted input signals for response realization. Furthermore, they enjoy low active and passive sensitivities. Various regular analyses support the design ideas. The functionality of the presented filters are tested by PSPICE simulations using TSMC 0.18 µm technology parameters with ± 0.9 V supply voltage. The circuits are also justified experimentally by creating the VDCC block using commercially available OPA860 ICs. The experimental and simulation results agree well with the theoretically predicted results.


2019 ◽  
Vol 9 (11) ◽  
pp. 2304 ◽  
Author(s):  
San-Fu Wang ◽  
Hua-Pin Chen ◽  
Yitsen Ku ◽  
Po-Yu Chen

This paper proposes a new high-input impedance current feedback operational amplifier (CFOA)- based voltage-mode multifunction biquadratic filter and a voltage-mode quadrature oscillator using the proposed high-input impedance CFOA-based biquadratic filter. The proposed high-input impedance CFOA-based voltage-mode multifunction biquadratic filter uses three CFOAs, three resistors, and two grounded capacitors with two inputs and three outputs. The filter can simultaneously realize non-inverting low-pass, non-inverting band-pass, and non-inverting band-reject filtering functions at the high-input impedance terminal while the inverting band-pass and non-inverting high-pass filtering functions can also be obtained by applying another high-input impedance terminal. The filter offers orthogonal control of resonance angular frequency and quality factor. The proposed high-input impedance CFOA-based voltage-mode multifunction biquadratic filter can be used to implement a voltage-mode quadrature oscillator with an independently controlled the frequency of oscillator and the condition of oscillation. The OrCAD PSpice simulation and experimental results of the commercially available integrated circuit, AD844AN, are used to confirm the characteristics of the proposed filter and oscillator.


2020 ◽  
Vol 41 (3) ◽  
Author(s):  
Tattaya Pukkalanun ◽  
Worapong Tangsrirat ◽  
Natchanai Roongmuanpha

This paper describes the practical realization of electronically adjustable voltage-mode universal filter with three inputs and single output (TISO) using the commercially available integrated circuit (IC)-based voltage differencing buffered amplifiers (VDBAs). The realization is resistor-less and contains only two VDBAs and two capacitors. The described filter structure can realize all the five standard biquadratic filter functions from the same configuration without needing any component matching criterions. It also exhibits low-output impedance, which enables for easy cascading in voltage-mode operation. Owing to practical VDBA realization, the filter circuit can be easily made electronically tunable with orthogonal o-Q tuning. The effects of the VDBA non-idealities on the filter performance have been analyzed in detail. To prove the theoretical finding, the performance of the studied circuit was also experimentally measured using the operational transconductance amplifier


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Hua-Pin Chen

This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.


2015 ◽  
Vol 781 ◽  
pp. 155-159 ◽  
Author(s):  
Suriya Soisang ◽  
Kamon Jirasereemomkul ◽  
Winai Jaikla ◽  
Kohji Higuchi

This paper presents a new voltage-mode single-input multiple-output multifunctional biquadratic filter using voltage differencing differential difference amplifiers (VDDDA) with high-input impedance. It consists of two VDDDA, two resistors, and two grounded capacitors. It can synthesize basic filter functions: high-past (HP), low-pass (LP) and band-pass (BP), responding through only single structure. The natural frequency can obtain by adjusting bias currents of VDDDA without disturbing quality factors. Because of using VDDDA as an active device in the circuit, the power consumption was low. The simulation using PSPICE program indicated that circuit operation has good agreement with the theory.


Sign in / Sign up

Export Citation Format

Share Document