scholarly journals Meat and Fish Freshness Assessment by a Portable and Simplified Electronic Nose System (Mastersense)

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3225 ◽  
Author(s):  
Grassi ◽  
Benedetti ◽  
Opizzio ◽  
Nardo ◽  
Buratti

The evaluation of meat and fish quality is crucial to ensure that products are safe and meet the consumers’ expectation. The present work aims at developing a new low-cost, portable, and simplified electronic nose system, named Mastersense, to assess meat and fish freshness. Four metal oxide semiconductor sensors were selected by principal component analysis and were inserted in an “ad hoc” designed measuring chamber. The Mastersense system was used to test beef and poultry slices, and plaice and salmon fillets during their shelf life at 4 °C, from the day of packaging and beyond the expiration date. The same samples were tested for Total Viable Count, and the microbial results were used to define freshness classes to develop classification models by the K-Nearest Neighbours’ algorithm and Partial Least Square–Discriminant Analysis. All the obtained models gave global sensitivity and specificity with prediction higher than 83.3% and 84.0%, respectively. Moreover, a McNemar’s test was performed to compare the prediction ability of the two classification algorithms, which resulted in comparable values (p > 0.05). Thus, the Mastersense prototype implemented with the K-Nearest Neighbours’ model is considered the most convenient strategy to assess meat and fish freshness.

Author(s):  
Sharvari Deshmukh ◽  
Nabarun Bhattacharyya ◽  
Arun Jana ◽  
Rajib Bandyopadhyay ◽  
R. A. Pandey

Industrial odor concentration measurement in continuous mode is a challenging task using olfactometers, as it's expensive and requires human involvement for a prolonged time. This chapter presents the development of an indigenous metal oxide sensor-based electronic nose system for measurement of industrial odor in ou/m3. The results of electronic nose and field olfactometer were correlated using multilinear regression and partial least square regression techniques. The results showed satisfactory prediction by both the models, with RMSE (6.70, and 4.02), RAE (0.29 and 0.16), and NAE (0.89 and 0.96), respectively, for MLR and PLS. The results indicated better performance of PLS compared to MLR. The objective of the present work is to train and employ artificial olfaction system for continuous measurement of obnoxious emissions emitted from industries bypassing involvement of olfactometer.


2014 ◽  
Vol 32 (No. 6) ◽  
pp. 538-548 ◽  
Author(s):  
A. Sanaeifar ◽  
S.S. Mohtasebi ◽  
M. Ghasemi-Varnamkhasti ◽  
H. Ahmadi ◽  
J. Lozano

Potential application of a metal oxide semiconductor based electronic nose (e-nose) as a non-destructive instrument for monitoring the change in volatile production of banana during the ripening process was studied. The proposed e-nose does not need any advanced or expensive laboratory equipment and proved to be reliable in recording meaningful differences between ripening stages. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Soft Independent Modelling of Class Analogy (SIMCA) and Support Vector Machines (SVM) techniques were used for this purpose. Results showed that the proposed e-nose can distinguish between different ripening stages. The e-nose was able to detect a clear difference in the aroma fingerprint of banana when using SVM analysis compared with PCA and LDA, SIMCA analysis. Using SVM analysis, it was possible to differentiate and to classify the different banana ripening stages, and this method was able to classify 98.66% of the total samples in each respective group. Sensor array capabilities in the classification of ripening stages using loading analysis and SVM and SIMCA were also investigated, which leads to develop the application of a specific e-nose system by applying the most effective sensors or ignoring the redundant sensors.  


2013 ◽  
Vol 25 (02) ◽  
pp. 1250027 ◽  
Author(s):  
Chun Yu ◽  
Tzu-Chien Hsiao ◽  
Chii-Wann Lin

Multivariable Analysis Methods have been used widely in Spectroscopy Analysis. Partial least square (PLS) and principal component analysis (PCA) are the two most popular methods due to their excellent ability in data components analysis and results prediction. This work derived 1D/2D PLS and 1D/2D PCA based on the viewpoint of three-layer artificial neural networks, and uses theoretical proving to figure out the essences of these two methods. Two 2D experimental dataset was used to verify the calibration and prediction ability, furthermore, the similarity and dissimilarity of PLS and PCA. The finding showed that both the 1D/2D PLS and 1D/2D PCA methods use maximum covariance and minimum sum of square error to figure out the relationship between independent and dependent variables. The dissimilarity is that, weight vectors calibration of PLS is cross-correlation, and that of PCA is autocorrelation. The difference causes that the PCA method would keep more principal characters than PLS under insufficient sample among and provides better calibration ability. PLS would provide higher performance in prediction under sufficient sample among. For the needs of system implementation of spectroscopic measurement and analysis, this study designed "Multivariate Analysis Toolkits for LabVIEW" for the convenient implementation in automatic measurement system integration.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Khairunnisa Khairunnisa ◽  
Rizka Pitri ◽  
Victor P Butar-Butar ◽  
Agus M Soleh

This research used CFSRv2 data as output data general circulation model. CFSRv2 involves some variables data with high correlation, so in this research is using principal component regression (PCR) and partial least square (PLS) to solve the multicollinearity occurring in CFSRv2 data. This research aims to determine the best model between PCR and PLS to estimate rainfall at Bandung geophysical station, Bogor climatology station, Citeko meteorological station, and Jatiwangi meteorological station by comparing RMSEP value and correlation value. Size used was 3×3, 4×4, 5×5, 6×6, 7×7, 8×8, 9×9, and 11×11 that was located between (-40) N - (-90) S and 1050 E -1100 E with a grid size of 0.5×0.5 The PLS model was the best model used in stastistical downscaling in this research than PCR model because of the PLS model obtained the lower RMSEP value and the higher correlation value. The best domain and RMSEP value for Bandung geophysical station, Bogor climatology station, Citeko meteorological station, and Jatiwangi meteorological station is 9 × 9 with 100.06, 6 × 6 with 194.3, 8 × 8 with 117.6, and 6 × 6 with 108.2, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1546
Author(s):  
Ioanna Dagla ◽  
Anthony Tsarbopoulos ◽  
Evagelos Gikas

Colistimethate sodium (CMS) is widely administrated for the treatment of life-threatening infections caused by multidrug-resistant Gram-negative bacteria. Until now, the quality control of CMS formulations has been based on microbiological assays. Herein, an ultra-high-performance liquid chromatography coupled to ultraviolet detector methodology was developed for the quantitation of CMS in injectable formulations. The design of experiments was performed for the optimization of the chromatographic parameters. The chromatographic separation was achieved using a Waters Acquity BEH C8 column employing gradient elution with a mobile phase consisting of (A) 0.001 M aq. ammonium formate and (B) methanol/acetonitrile 79/21 (v/v). CMS compounds were detected at 214 nm. In all, 23 univariate linear-regression models were constructed to measure CMS compounds separately, and one partial least-square regression (PLSr) model constructed to assess the total CMS amount in formulations. The method was validated over the range 100–220 μg mL−1. The developed methodology was employed to analyze several batches of CMS injectable formulations that were also compared against a reference batch employing a Principal Component Analysis, similarity and distance measures, heatmaps and the structural similarity index. The methodology was based on freely available software in order to be readily available for the pharmaceutical industry.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mika Jönsson ◽  
Björn Gerdle ◽  
Bijar Ghafouri ◽  
Emmanuel Bäckryd

Abstract Background Neuropathic pain (NeuP) is a complex, debilitating condition of the somatosensory system, where dysregulation between pro- and anti-inflammatory cytokines and chemokines are believed to play a pivotal role. As of date, there is no ubiquitously accepted diagnostic test for NeuP and current therapeutic interventions are lacking in efficacy. The aim of this study was to investigate the ability of three biofluids - saliva, plasma, and cerebrospinal fluid (CSF), to discriminate an inflammatory profile at a central, systemic, and peripheral level in NeuP patients compared to healthy controls. Methods The concentrations of 71 cytokines, chemokines and growth factors in saliva, plasma, and CSF samples from 13 patients with peripheral NeuP and 13 healthy controls were analyzed using a multiplex-immunoassay based on an electrochemiluminescent detection method. The NeuP patients were recruited from a clinical trial of intrathecal bolus injection of ziconotide (ClinicalTrials.gov identifier NCT01373983). Multivariate data analysis (principal component analysis and orthogonal partial least square regression) was used to identify proteins significant for group discrimination and protein correlation to pain intensity. Proteins with variable influence of projection (VIP) value higher than 1 (combined with the jack-knifed confidence intervals in the coefficients plot not including zero) were considered significant. Results We found 17 cytokines/chemokines that were significantly up- or down-regulated in NeuP patients compared to healthy controls. Of these 17 proteins, 8 were from saliva, 7 from plasma, and 2 from CSF samples. The correlation analysis showed that the most important proteins that correlated to pain intensity were found in plasma (VIP > 1). Conclusions Investigation of the inflammatory profile of NeuP showed that most of the significant proteins for group separation were found in the less invasive biofluids of saliva and plasma. Within the NeuP patient group it was also seen that proteins in plasma had the highest correlation to pain intensity. These preliminary results indicate a potential for further biomarker research in the more easily accessible biofluids of saliva and plasma for chronic peripheral neuropathic pain where a combination of YKL-40 and MIP-1α in saliva might be of special interest for future studies that also include other non-neuropathic pain states.


2021 ◽  
pp. 096703352098731
Author(s):  
Adenilton C da Silva ◽  
Lívia PD Ribeiro ◽  
Ruth MB Vidal ◽  
Wladiana O Matos ◽  
Gisele S Lopes

The use of alcohol-based hand sanitizers is recommended as one of several strategies to minimize contamination and spread of the COVID-19 disease. Current reports suggest that the virucidal potential of ethanol occurs at concentrations close to 70%. Traditional methods of verifying the ethanol concentration in such products invite potential errors due to the viscosity of chemical components or may be prohibitively expensive to undertake in large demand. Near infrared (NIR) spectroscopy and chemometrics have already been used for the determination of ethanol in other matrices and present an alternative fast and reliable approach to quality control of alcohol-based hand sanitizers. In this study, a portable NIR spectrometer combined with classification chemometric tools, i.e., partial least square discriminant analysis (PLS–DA) and linear discriminant analysis with successive algorithm projection (SPA–LDA) were used to construct models to identify conforming and non-conforming commercial and laboratory synthesized hand sanitizer samples. Principal component analysis (PCA) was applied in an exploratory data study. Three principal components accounted for 99% of data variance and demonstrate clustering of conforming and non-conforming samples. The PLS–DA and SPA–LDA classification models presented 77 and 100% of accuracy in cross/internal validation respectively and 100% of accuracy in the classification of test samples. A total of 43% commercial samples evaluated using the PLS–DA and SPA–LDA presented ethanol content non-conforming for hand sanitizer gel. These results indicate that use of NIR spectroscopy and chemometrics is a promising strategy, yielding a method that is fast, portable, and reliable for discrimination of alcohol-based hand sanitizers with respect to conforming and non-conforming ethanol concentrations.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Huan-Hua Xu ◽  
Zhen-Hong Jiang ◽  
Cong-Shu Huang ◽  
Yu-Ting Sun ◽  
Long-Long Xu ◽  
...  

Abstract Background OPD and OPD' are the two main active components of Ophiopogon japonicas in Shenmai injection (SMI). Being isomers of each other, they are supposed to have similar pharmacological activities, but the actual situation is complicated. The difference of hemolytic behavior between OPD and OPD' in vivo and in vitro was discovered and reported by our group for the first time. In vitro, only OPD' showed hemolysis reaction, while in vivo, both OPD and OPD' caused hemolysis. In vitro, the primary cause of hemolysis has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD'. In vivo, although there is a possible explanation for this phenomenon, the one is that OPD is bio-transformed into OPD' or its analogues in vivo, the other one is that both OPD and OPD' were metabolized into more activated forms for hemolysis. However, the mechanism of hemolysis in vivo is still unclear, especially the existing literature are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. Therefore, the study of hemolysis of OPD and OPD' in vivo is of great practical significance in response to the increase of adverse events of SMI. Methods Aiming at the hemolysis in vivo, this manuscript adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD- and OPD'-treated rats. Metabolomics and lipidomics analyses were performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometers (MS) and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids. Results Both OPD and OPD' groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD' were closely related to the interference of phospholipid metabolism. Conclusions This study provided a comprehensive description of metabolomics and lipidomics changes between OPD- and OPD'-treated rats, it would add to the knowledge base of the field, which also provided scientific guidance for the subsequent mechanism research. However, the underlying mechanism require further research.


Author(s):  
Dharmastuti Cahya Fatmarahmi ◽  
Ratna Asmah Susidarti ◽  
Respati Tri Swasono ◽  
Abdul Rohman

The study aims to develop an effective, efficient, and reliable method using Fourier Transform Infrared (FTIR) spectroscopy with Attenuated Total Reflection (ATR) combined with chemometric for identifying the synthetic drug in Indonesian herbal medicine known as Jamu. Jamu powders, Metamizole, and the binary mixture of Jamu and Metamizole were measured using FTIR-ATR at the mid-infrared region (4000-650 cm-1). The obtained spectra profiles were further analyzed by Principal Component Analysis, Partial Least Square Regression, Principal Component Regression, and Discriminant Analysis. Jamu Pegel Linu (JPL), Jamu Encok (JE), Jamu Sakit Pinggang (JSP), Metamizole (M), and adulterated Jamu by Metamizole were discriminated well on PCA score plot. PLSR and PCR showed the accuracy and precision data to quantify JPL, JE, and JSP, and each adulterated by M with R2 value > 0,995 and low value of RMSEC and RMSEP. Discriminant Analysis (DA) was successfully grouping Jamu and Metamizole without any misclassification. A combination of FTIR spectroscopy and chemometrics offered useful tools for detecting Metamizole in traditional herbal medicine.


Sign in / Sign up

Export Citation Format

Share Document