scholarly journals Double-Gap Magnetic Flux Concentrator Design for High-Sensitivity Magnetic Tunnel Junction Sensors

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4475 ◽  
Author(s):  
Jiafei Hu ◽  
Minhui Ji ◽  
Weicheng Qiu ◽  
Long Pan ◽  
Peisen Li ◽  
...  

To improve the sensitivity of the magnetic tunnel junction(MTJ)sensor, a novel architecture for a double-gap magnetic flux concentrator (MFC) was studied theoretically and experimentally in this paper. The three-dimensional finite element model of magnetic flux was established to optimize the magnetic field amplification factor, with different gaps. The simulation results indicate that the sensitivity of an MTJ sensor with a double-gap MFC can be significantly better than that of a sensor with a traditional single-gap MFC, due to the fact that the magnetic magnification sharply increases with the decrease in effective gap width. Besides this, the half-bridge MTJ sensors with the double-gap MFC were fabricated using photolithography, ion milling, evaporation, and electroplating processes. Experimental results show that the sensitivity of the MTJ sensor increased by ten times compared to the sensor without the double-gap MFC, which underlines the theoretical predictions. Furthermore, there is no significant increase in the sensor noise. The work in this paper contributes to the development of high-performance MTJ sensors.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1304
Author(s):  
Raquel Fernández de Cabo ◽  
David González-Andrade ◽  
Pavel Cheben ◽  
Aitor V. Velasco

Efficient power splitting is a fundamental functionality in silicon photonic integrated circuits, but state-of-the-art power-division architectures are hampered by limited operational bandwidth, high sensitivity to fabrication errors or large footprints. In particular, traditional Y-junction power splitters suffer from fundamental mode losses due to limited fabrication resolution near the junction tip. In order to circumvent this limitation, we propose a new type of high-performance Y-junction power splitter that incorporates subwavelength metamaterials. Full three-dimensional simulations show a fundamental mode excess loss below 0.1 dB in an ultra-broad bandwidth of 300 nm (1400–1700 nm) when optimized for a fabrication resolution of 50 nm, and under 0.3 dB in a 350 nm extended bandwidth (1350–1700 nm) for a 100 nm resolution. Moreover, analysis of fabrication tolerances shows robust operation for the fundamental mode to etching errors up to ± 20 nm. A proof-of-concept device provides an initial validation of its operation principle, showing experimental excess losses lower than 0.2 dB in a 195 nm bandwidth for the best-case resolution scenario (i.e., 50 nm).


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 60
Author(s):  
Viacheslav Glinskikh ◽  
Oleg Nechaev ◽  
Igor Mikhaylov ◽  
Kirill Danilovskiy ◽  
Vladimir Olenchenko

This paper is dedicated to the topical problem of examining permafrost’s state and the processes of its geocryological changes by means of geophysical methods. To monitor the cryolithozone, we proposed and scientifically substantiated a new technique of pulsed electromagnetic cross-well sounding. Based on the vector finite-element method, we created a mathematical model of the cross-well sounding process with a pulsed source in a three-dimensional spatially heterogeneous medium. A high-performance parallel computing algorithm was developed and verified. Through realistic geoelectric models of permafrost with a talik under a highway, constructed following the results of electrotomography field data interpretation, we numerically simulated the pulsed sounding on the computing resources of the Siberian Supercomputer Center of SB RAS. The simulation results suggest the proposed system of pulsed electromagnetic cross-well monitoring to be characterized by a high sensitivity to the presence and dimensions of the talik. The devised approach can be oriented to addressing a wide range of issues related to monitoring permafrost rocks under civil and industrial facilities, buildings, and constructions.


Nanoscale ◽  
2021 ◽  
Author(s):  
Chang Liu ◽  
Xiaodong Li ◽  
Tiangui Hu ◽  
Wenkai Zhu ◽  
Faguang Yan ◽  
...  

Integration of two dimensional (2D) materials with three dimensional (3D) semiconductors reveals intriguing optical and electrical properties that surpass those of the original materials. Here we report the high performance...


2001 ◽  
Author(s):  
Jay R. Sayre ◽  
Alfred C. Loos

Abstract Vacuum assisted resin transfer molding (VARTM) has shown potential to significantly reduce the manufacturing cost of high-performance aerospace composite structures. In this investigation, high fiber volume fraction, triaxially braided preforms with through-the-thickness stitching were successfully resin infiltrated by the VARTM process. The preforms, resin infiltrated with three different resin systems, produced cured composites that were fully wet-out and void free. A three-dimensional finite element model was used to simulation resin infusion into the preforms. The predicted flow patterns agreed well with the flow pattern observed during the infiltration process. The total infiltration times calculated using the model compared well with the measured times.


2018 ◽  
Vol 112 (9) ◽  
pp. 092402 ◽  
Author(s):  
Yiming Huai ◽  
Huadong Gan ◽  
Zihui Wang ◽  
Pengfa Xu ◽  
Xiaojie Hao ◽  
...  

2013 ◽  
Vol 5 (2) ◽  
pp. 2389-2418
Author(s):  
H. Steffen ◽  
P. Wu

Abstract. We present the sensitivity of Global Navigation Satellite System (GNSS) measurements at selected GNSS stations used both in the EUREF Permanent Network as well as in the BIFROST project to distinct areas in a laterally heterogeneous upper mantle beneath Fennoscandia. We therefore use a three-dimensional finite element model for glacial isostatic adjustment (GIA) calculations. The underlying structure is based on the S20A seismic tomography model, whose shear-wave velocities have been transformed into a viscosity structure of the upper mantle. Lower mantle is not investigated as previous results showed negligible sensitivity of Fennoscandian GIA data to it. We subdivide the upper mantle in four layers with lateral viscosity structure. Areas with similar viscosity within a layer are combined to larger blocks. Further subdivision is made into areas inside and outside the formerly glaciated areas. This leads to about 20 differently shaped areas per layer. We then calculate the sensitivity kernels at 10 selected GNSS stations for all blocks in comparison to a well-fitting one-dimensional GIA model. We find that GNSS stations are most sensitive to mantle viscosity in the near surrounding of the station, i.e. in the nearest about 250 km, and only within the formerly glaciated area. This area can be enlarged up to 800 km when velocities of stations in the uplift center are investigated. There is no indication of sufficiently high sensitivity of all investigated GNSS stations to regions outside the glaciated area. We also note that in the first mantle layer (70–250 km depth) below the lithosphere, there is only small sensitivity to parts along the Norwegian coast. Most prominent features in the Fennoscandian upper mantle may be detected in the second (250–450 km depth) and third layer (450–550 km depth). In future investigations on the lateral viscosity structure using GNSS measurements one should only consider GNSS stations within the area of former glaciation. They can be further grouped to address certain areas. In a combination with other GIA data, e.g. relative sea-level and gravity data, it is then highly recommended to assign more weight on those GNSS results with high sensitivity in order to determine the viscosity of a certain region.


SPIN ◽  
2013 ◽  
Vol 03 (04) ◽  
pp. 1340014 ◽  
Author(s):  
TAKAHIRO HANYU

This paper presents an architecture-level approach, called nonvolatile logic-in-memory (NV-LIM) architecture, to solving performance-wall and power-wall problems in the present CMOS-only-based logic-LSI (Large-Scaled Integration) processors. The use of magnetic tunnel junction devices combined with a CMOS-gate style makes it possible to achieve a high-performance and ultra-low-power logic LSI. Some concrete examples using the proposed method allow you to achieve the desired performance improvement compared to a corresponding CMOS-only-based realization.


Author(s):  
Yu Zhuang ◽  
Yanling Guo ◽  
Jian Li ◽  
Yueqiang Yu ◽  
Kaiyi Jiang ◽  
...  

AbstractConductive polymer composites (CPCs) combining with specific microstructures (micropores, microcracks, etc.) can exhibit unique resistance response changes, which can be widely regarded as an effective way to improve sensing performance. This study takes advantage of the characteristics of the formation of tiny pores between crystal grains during selective laser sintering (SLS) processing to introduce a microporous structure into the thermoplastic polyurethane (TPU)/carbon nanotube (CNT) sensing element to prepare a three-dimensional porous conductive structure. The effect of the SLS process on sensing sensitivity, accuracy, and density was studied, and its sensing and forming mechanism were discussed. By adjusting SLS process parameters to control the performance of porous structure sensor elements, a final TPU/CNT sensor element with a wide pressure detection range, high sensitivity, a fast response time, and good stability and durability was developed. Finally, the optimal performance of the developed flexible pressure sensor was successfully used to detect the pressure distribution of the human foot. This study provided a simple and effective research method to develop high-performance flexible pressure sensors.


Sign in / Sign up

Export Citation Format

Share Document