scholarly journals Nanostructured Chemoresistive Sensors for Oncological Screening and Tumor Markers Tracking: Single Sensor Approach Applications on Human Blood and Cell Samples

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1411
Author(s):  
Nicolò Landini ◽  
Gabriele Anania ◽  
Michele Astolfi ◽  
Barbara Fabbri ◽  
Vincenzo Guidi ◽  
...  

Preventive screening does not only allow to preemptively intervene on pathologies before they can harm the host; but also to reduce the costs of the intervention itself; boosting the efficiency of the NHS (National Health System) by saving resources for other purposes. To improve technology advancements in this field; user-friendly yet low-cost devices are required; and various applications for gas sensors have been tested and proved reliable in past studies. In this work; cell cultures and blood samples have been studied; using nanostructured chemoresistive sensors; to both verify if this technology can reliably detect tumor markers; and if correlations between responses from tumor line metabolites and the screening outcomes on human specimens could be observed. The results showed how sensors responded differently to the emanations from healthy and mutant (for cells) or tumor affected (for blood) samples, and how those results were consistent between them, since the tumoral specimens had higher responses compared to the ones of their healthy counterparts. Even though the patterns in the responses require a bigger population to be defined properly; it appeared that the different macro-groups between the same kind of samples are distinguishable from some of the sensors chosen in the study; giving promising outcomes for further research.

Proceedings ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Landini ◽  
Anania ◽  
Astolfi ◽  
Fabbri ◽  
Gaiardo ◽  
...  

The demand for reliable devices to detect tumor biomarkers in human body is constantlyincreasing [...]


2021 ◽  
Author(s):  
Seyed Ali Tabatabaei ◽  
Mohammad Zabetian targhi

Abstract BackgroundIsolation of microparticles and biological cells on microfluidic chips has received considerable attention due to their applications in numerous areas such as medical and engineering fields. Microparticles separation are of great importance in bioassays owing to the need for a smaller sample and device size, and lower manufacturing costs. In this study, we first explain the concepts of separation and microfluidic science along with their applications in the medical sciences, and then, a conceptual design of a novel inertial microfluidic system is proposed and analyzed. The PDMS spiral microfluidic device was fabricated, and its effects on the separation of particles with sizes similar to biological particles were experimentally analyzed. This separation technique can be used in the process of separating cancer cells from the normal ones in the blood samples.ResultsThese components required for testing were selected, assembled, and finally, a very affordable microfluidic kit was provided. Different experiments were designed, and the results were analyzed using appropriate software and methods. Separator system tests with polydisperse hollow glass particles (diameter 2-20 µm), and monodisperse Polystyrene particles (diameter 5,15 µm), and the results exhibit an acceptable chip performance with 86 percent of efficiency for both monodisperse particles and polydisperse particles. The microchannel collects particles with an average diameter of 15.8 μm, 9.4 μm, and 5.9 μm at the Proposed reservoirs. ConclusionThis chip can be integrated into a more extensive point-of-care diagnostic system to test blood samples, and it could be said Based on the results of the experiments, this low-cost and user-friendly setting can be used for a variety of microparticle separation programs such as cell separation in biological assays.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 466
Author(s):  
Michele Astolfi ◽  
Giorgio Rispoli ◽  
Gabriele Anania ◽  
Elena Artioli ◽  
Veronica Nevoso ◽  
...  

User-friendly, low-cost equipment for preventive screening of severe or deadly pathologies are one of the most sought devices by the National Health Services, as they allow early disease detection and treatment, often avoiding its degeneration. In recent years more and more research groups are developing devices aimed at these goals employing gas sensors. Here, nanostructured chemoresistive metal oxide (MOX) sensors were employed in a patented prototype aimed to detect volatile organic compounds (VOCs), exhaled by blood samples collected from patients affected by colorectal cancer and from healthy subjects as a control. Four sensors, carefully selected after many years of laboratory tests on biological samples (cultured cells, human stools, human biopsies, etc.), were based here on various percentages of tin, tungsten, titanium, niobium, tantalum and vanadium oxides. Sensor voltage responses were statistically analyzed also with the receiver operating characteristic (ROC) curves, that allowed the identification of the cut-off discriminating between healthy and tumor affected subjects for each sensor, leading to an estimate of sensitivity and specificity parameters. ROC analysis demonstrated that sensors employing tin and titanium oxides decorated with gold nanoparticles gave sensitivities up to 80% yet with a specificity of 70%.


2012 ◽  
Vol 44 (2) ◽  
pp. 75-93
Author(s):  
Peter Mortensen

This essay takes its cue from second-wave ecocriticism and from recent scholarly interest in the “appropriate technology” movement that evolved during the 1960s and 1970s in California and elsewhere. “Appropriate technology” (or AT) refers to a loosely-knit group of writers, engineers and designers active in the years around 1970, and more generally to the counterculture’s promotion, development and application of technologies that were small-scale, low-cost, user-friendly, human-empowering and environmentally sound. Focusing on two roughly contemporary but now largely forgotten American texts Sidney Goldfarb’s lyric poem “Solar-Heated-Rhombic-Dodecahedron” (1969) and Gurney Norman’s novel Divine Right’s Trip (1971)—I consider how “hip” literary writers contributed to eco-technological discourse and argue for the 1960s counterculture’s relevance to present-day ecological concerns. Goldfarb’s and Norman’s texts interest me because they conceptualize iconic 1960s technologies—especially the Buckminster Fuller-inspired geodesic dome and the Volkswagen van—not as inherently alienating machines but as tools of profound individual, social and environmental transformation. Synthesizing antimodernist back-to-nature desires with modernist enthusiasm for (certain kinds of) machinery, these texts adumbrate a humanity- and modernity-centered post-wilderness model of environmentalism that resonates with the dilemmas that we face in our increasingly resource-impoverished, rapidly warming and densely populated world.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 697
Author(s):  
Siming Lu ◽  
Sha Lin ◽  
Hongrui Zhang ◽  
Liguo Liang ◽  
Shien Shen

Respiratory viral infections threaten human life and inflict an enormous healthcare burden worldwide. Frequent monitoring of viral antibodies and viral load can effectively help to control the spread of the virus and make timely interventions. However, current methods for detecting viral load require dedicated personnel and are time-consuming. Additionally, COVID-19 detection is generally relied on an automated PCR analyzer, which is highly instrument-dependent and expensive. As such, emerging technologies in the development of respiratory viral load assays for point-of-care (POC) testing are urgently needed for viral screening. Recent advances in loop-mediated isothermal amplification (LAMP), biosensors, nanotechnology-based paper strips and microfluidics offer new strategies to develop a rapid, low-cost, and user-friendly respiratory viral monitoring platform. In this review, we summarized the traditional methods in respiratory virus detection and present the state-of-art technologies in the monitoring of respiratory virus at POC.


ACS Omega ◽  
2021 ◽  
Author(s):  
Yulong Chen ◽  
Mingjie Li ◽  
Wenjun Yan ◽  
Xin Zhuang ◽  
Kar Wei Ng ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 62592-62605 ◽  
Author(s):  
Bin Tian ◽  
Kun Mean Hou ◽  
Xunxing Diao ◽  
Hongling Shi ◽  
Haiying Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document