scholarly journals Laboratory Comparison of Low-Cost Particulate Matter Sensors to Measure Transient Events of Pollution

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2219 ◽  
Author(s):  
Florentin Michel Jacques Bulot ◽  
Hugo Savill Russell ◽  
Mohsen Rezaei ◽  
Matthew Stanley Johnson ◽  
Steven James Johnston Ossont ◽  
...  

Airborne particulate matter (PM) exposure has been identified as a key environmental risk factor, associated especially with diseases of the respiratory and cardiovascular system and with almost 9 million premature deaths per year. Low-cost optical sensors for PM measurement are desirable for monitoring exposure closer to the personal level and particularly suited for developing spatiotemporally dense city sensor networks. However, questions remain over the accuracy and reliability of the data they produce, particularly regarding the influence of environmental parameters such as humidity and temperature, and with varying PM sources and concentration profiles. In this study, eight units each of five different models of commercially available low-cost optical PM sensors (40 individual sensors in total) were tested under controlled laboratory conditions, against higher-grade instruments for: lower limit of detection, response time, responses to sharp pollution spikes lasting <1 min , and the impact of differing humidity and PM source. All sensors detected the spikes generated with a varied range of performances depending on the model and presenting different sensitivity mainly to sources of pollution and to size distributions with a lesser impact of humidity. The sensitivity to particle size distribution indicates that the sensors may provide additional information to PM mass concentrations. It is concluded that improved performance in field monitoring campaigns, including tracking sources of pollution, could be achieved by using a combination of some of the different models to take advantage of the additional information made available by their differential response.

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 848
Author(s):  
Benjamin Eid ◽  
David Beggs ◽  
Peter Mansell

In 2019–2020, a particularly bad bushfire season in Australia resulted in cattle being exposed to prolonged periods of smoke haze and reduced air quality. Bushfire smoke contains many harmful pollutants, and impacts on regions far from the fire front, with smoke haze persisting for weeks. Particulate matter (PM) is one of the major components of bushfire smoke known to have a negative impact on human health. However, little has been reported about the potential effects that bushfire smoke has on cattle exposed to smoke haze for extended periods. We explored the current literature to investigate evidence for likely effects on cattle from prolonged exposure to smoke generated from bushfires in Australia. We conducted a search for papers related to the impacts of smoke on cattle. Initial searching returned no relevant articles through either CAB Direct or PubMed databases, whilst Google Scholar provided a small number of results. The search was then expanded to look at two sub-questions: the type of pollution that is found in bushfire smoke, and the reported effects of both humans and cattle being exposed to these types of pollutants. The primary mechanism for damage due to bushfire smoke is due to small airborne particulate matter (PM). Although evidence demonstrates that PM from bushfire smoke has a measurable impact on both human mortality and cardiorespiratory morbidities, there is little evidence regarding the impact of chronic bushfire smoke exposure in cattle. We hypothesize that cattle are not severely affected by chronic exposure to smoke haze, as evidenced by the lack of reports. This may be because cattle do not tend to suffer from the co-morbidities that, in the human population, seem to be made worse by smoke and pollution. Further, small changes to background mortality rates or transient morbidity may also go unreported.


2018 ◽  
Vol 44 ◽  
pp. 00006 ◽  
Author(s):  
Marek Badura ◽  
Piotr Batog ◽  
Anetta Drzeniecka-Osiadacz ◽  
Piotr Modzel

Monitoring systems are needed to obtain information about particulate matter (PM) concentrations and to make such information accessible to the public. Small, low-cost, optical sensors could be used to improve the spatial and temporal resolution of PM data. The paper presents results of collocated comparison of four low-cost PM sensors and TEOM analyser, conducted from 20-08-2017 to 24-12-2017 in Wrocław, Poland. Plantower PMS7003 and Nova Fitness SDS011 sensors proved to be the best in terms of precision and were linearly correlated with TEOM data. Alphasense OPC-N2 sensors exhibited only moderate precision and linearity. Winsen ZH03A sensors had low repeatability between units and only one copy demonstrated good operation possibilities. All tested sensors had a bias in relation to PM2.5 concentrations obtained from TEOM.


2021 ◽  
Vol 21 (3) ◽  
pp. 807-818
Author(s):  
CRISTIANA RADULESCU ◽  
RODICA MARIANA ION ◽  
CLAUDIA STIHI ◽  
IOANA DANIELA DULAMA ◽  
CRISTINA MIHAELA NICOLESCU ◽  
...  

The present paper is focused on the microclimatic investigation and weather-climatic phenomena matrix assessment, which can be generated for heritage objectives at different spatial and temporal resolutions, correlated with physicochemical analysis of the particulate matter (PM2.5-10). In the literature the importance of atmospheric PM monitoring in the proximity of monuments is not yet sufficiently highlighted. In this respect, the microclimatic investigation of the Tropaeum Traiani Monument (Adamclisi, Romania) was performed to assess the suitability of a closed environment, located outdoors, according to the conservation requirements of heritage materials. The monitoring campaigns (four seasons, e.g., from summer of the year 2018 to spring of the year 2019) were carried out by non-invasive measuring equipment. The collected data were used to investigate the hygrothermal and chemical behavior inside and outside of Tropaeum Traiani Monument, built in 109, to assess the risks on the oldest structural material. Principal component analysis (PCA) was performed by IBM SPSS Statistics software to assess the similarities between the microclimatic parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Caroline Kiai ◽  
Christopher Kanali ◽  
Joseph Sang ◽  
Michael Gatari

Air pollution is one of the most important environmental and public health concerns worldwide. Urban air pollution has been increasing since the industrial revolution due to rapid industrialization, mushrooming of cities, and greater dependence on fossil fuels in urban centers. Particulate matter (PM) is considered to be one of the main aerosol pollutants that causes a significant adverse impact on human health. Low-cost air quality sensors have attracted attention recently to curb the lack of air quality data which is essential in assessing the health impacts of air pollutants and evaluating land use policies. This is mainly due to their lower cost in comparison to the conventional methods. The aim of this study was to assess the spatial extent and distribution of ambient airborne particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) in Nairobi City County. Seven sites were selected for monitoring based on the land use type: high- and low-density residential, industrial, agricultural, commercial, road transport, and forest reserve areas. Calibrated low-cost sensors and cyclone samplers were used to monitor PM2.5 concentration levels and gravimetric measurements for elemental composition of PM2.5, respectively. The sensor percentage accuracy for calibration ranged from 81.47% to 98.60%. The highest 24-hour average concentration of PM2.5 was observed in Viwandani, an industrial area (111.87 μg/m³), and the lowest concentration at Karura (21.25 μg/m³), a forested area. The results showed a daily variation in PM2.5 concentration levels with the peaks occurring in the morning and the evening due to variation in anthropogenic activities and the depth of the atmospheric boundary layer. Therefore, the study suggests that residents in different selected land use sites are exposed to varying levels of PM2.5 pollution on a regular basis, hence increasing the potential of causing long-term health effects.


2015 ◽  
Vol 8 (7) ◽  
pp. 2639-2648 ◽  
Author(s):  
Y. Cheng ◽  
K.-B. He

Abstract. A common approach for measuring the mass of organic carbon (OC) and elemental carbon (EC) in airborne particulate matter involves collection on a quartz fiber filter and subsequent thermal–optical analysis. Although having been widely used in aerosol studies and in PM2.5 (fine particulate matter) chemical speciation monitoring networks in particular, this measurement approach is prone to several types of artifacts, such as the positive sampling artifact caused by the adsorption of gaseous organic compounds onto the quartz filter, the negative sampling artifact due to the evaporation of OC from the collected particles and the analytical artifact in the thermal–optical determination of OC and EC (which is strongly associated with the transformation of OC into char OC and typically results in an underestimation of EC). The presence of these artifacts introduces substantial uncertainties to observational data on OC and EC and consequently limits our ability to evaluate OC and EC estimations in air quality models. In this study, the influence of sampling frequency on the measurement of OC and EC was investigated based on PM2.5 samples collected in Beijing, China. Our results suggest that the negative sampling artifact of a bare quartz filter could be remarkably enhanced due to the uptake of water vapor by the filter medium. We also demonstrate that increasing sampling duration does not necessarily reduce the impact of positive sampling artifact, although it will enhance the analytical artifact. Due to the effect of the analytical artifact, EC concentrations of 48 h averaged samples were about 15 % lower than results from 24 h averaged ones. In addition, it was found that with the increase of sampling duration, EC results exhibited a stronger dependence on the charring correction method and, meanwhile, optical attenuation (ATN) of EC (retrieved from the carbon analyzer) was more significantly biased by the shadowing effect. Results from this study will be useful for the design of China's PM2.5 chemical speciation monitoring network, which can be expected to be inaugurated in the near future.


2020 ◽  
Vol 305 ◽  
pp. 00003
Author(s):  
Nicolae Patrascoiu

The monitoring of environmental parameters in active industrial areas where there exist potential sources of pollution, and even more so in the area of decommissioned or closure mining activities, is very important from the point of view of prevention of environmental accidents. In this paper, we propose a solution for the monitoring of the environmental parameters with the local acquisition and processing of the data and the transmission of alarm signals to a higher hierarchical level through the use of radio communications. A flexible hardware structure and software development concept are presented to be integrated into the national air quality monitoring network.


2017 ◽  
Vol 114 (39) ◽  
pp. 10384-10389 ◽  
Author(s):  
Avraham Ebenstein ◽  
Maoyong Fan ◽  
Michael Greenstone ◽  
Guojun He ◽  
Maigeng Zhou

This paper finds that a 10-μg/m3 increase in airborne particulate matter [particulate matter smaller than 10 μm (PM10)] reduces life expectancy by 0.64 years (95% confidence interval = 0.21–1.07). This estimate is derived from quasiexperimental variation in PM10 generated by China’s Huai River Policy, which provides free or heavily subsidized coal for indoor heating during the winter to cities north of the Huai River but not to those to the south. The findings are derived from a regression discontinuity design based on distance from the Huai River, and they are robust to using parametric and nonparametric estimation methods, different kernel types and bandwidth sizes, and adjustment for a rich set of demographic and behavioral covariates. Furthermore, the shorter lifespans are almost entirely caused by elevated rates of cardiorespiratory mortality, suggesting that PM10 is the causal factor. The estimates imply that bringing all of China into compliance with its Class I standards for PM10 would save 3.7 billion life-years.


Sign in / Sign up

Export Citation Format

Share Document