scholarly journals Resource Allocation to Massive Internet of Things in LoRaWANs

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2645 ◽  
Author(s):  
Arshad Farhad ◽  
Dae-Ho Kim ◽  
Jae-Young Pyun

A long-range wide area network (LoRaWAN) adapts the ALOHA network concept for channel access, resulting in packet collisions caused by intra- and inter-spreading factor (SF) interference. This leads to a high packet loss ratio. In LoRaWAN, each end device (ED) increments the SF after every two consecutive failed retransmissions, thus forcing the EDs to use a high SF. When numerous EDs switch to the highest SF, the network loses its advantage of orthogonality. Thus, the collision probability of the ED packets increases drastically. In this study, we propose two SF allocation schemes to enhance the packet success ratio by lowering the impact of interference. The first scheme, called the channel-adaptive SF recovery algorithm, increments or decrements the SF based on the retransmission of the ED packets, indicating the channel status in the network. The second approach allocates SF to EDs based on ED sensitivity during the initial deployment. These schemes are validated through extensive simulations by considering the channel interference in both confirmed and unconfirmed modes of LoRaWAN. Through simulation results, we show that the SFs have been adaptively applied to each ED, and the proposed schemes enhance the packet success delivery ratio as compared to the typical SF allocation schemes.

Author(s):  
Aizat Faiz Ramli ◽  
Muhammad Ikram Shabry ◽  
Mohd Azlan Abu ◽  
Hafiz Basarudin

LoRaWAN is one of the leading Low power wide area network (LPWAN) LPWAN technologies that compete for the formation of big scale Internet of Things (IoT). It uses LoRa protocol to achieve long range, low bit rate and low power communication. Large scale LoRaWAN based IoT deployments can consist of battery powered sensor nodes. Therefore, the energy consumption and efficiency of these nodes are crucial factors that can influence the lifetime of the network. However, there is no coherent experimental based research which identifies the factors that influence the LoRa energy efficiency at various nodes density. In this paper, results on measuring the packet delivery ratio, packet loss, data rate and energy consumption ratio ECR to gauge the energy efficiency of LoRa devices at various nodes density are presented. It is shown that the ECR of LoRa is inversely proportional to the nodes density and that the ECR of the network is smaller at higher traffic indicating better network energy efficiency. It is also demonstrated that at high node density, spreading factor SF of 7 and 9 can improve the energy efficiency of the network by 5 and 3 times, respectively, compare to SF 11.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4723 ◽  
Author(s):  
Muhammad Asad Ullah ◽  
Junnaid Iqbal ◽  
Arliones Hoeller ◽  
Richard Souza ◽  
Hirley Alves

Low-power wide-area networks (LPWANs) are emerging rapidly as a fundamental Internet of Things (IoT) technology because of their low-power consumption, long-range connectivity, and ability to support massive numbers of users. With its high growth rate, Long-Range (LoRa) is becoming the most adopted LPWAN technology. This research work contributes to the problem of LoRa spreading factor (SF) allocation by proposing an algorithm on the basis of K-means clustering. We assess the network performance considering the outage probabilities of a large-scale unconfirmed-mode class-A LoRa Wide Area Network (LoRaWAN) model, without retransmissions. The proposed algorithm allows for different user distribution over SFs, thus rendering SF allocation flexible. Such distribution translates into network parameters that are application dependent. Simulation results consider different network scenarios and realistic parameters to illustrate how the distance from the gateway and the number of nodes in each SF affects transmission reliability. Theoretical and simulation results show that our SF allocation approach improves the network’s average coverage probability up to 5 percentage points when compared to the baseline model. Moreover, our results show a fairer network operation where the performance difference between the best- and worst-case nodes is significantly reduced. This happens because our method seeks to equalize the usage of each SF. We show that the worst-case performance in one deployment scenario can be enhanced by 1 . 53 times.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 280 ◽  
Author(s):  
Jesus Sanchez-Gomez ◽  
Jorge Gallego-Madrid ◽  
Ramon Sanchez-Iborra ◽  
Jose Santa ◽  
Antonio Skarmeta

The dawn of the Internet of Things (IoT) paradigm has brought about a series of novel services never imagined until recently. However, certain deployments such as those employing Low-Power Wide-Area Network (LPWAN)-based technologies may present severe network restrictions in terms of throughput and supported packet length. This situation prompts the isolation of LPWAN systems on islands with limited interoperability with the Internet. For that reason, the IETF’s LPWAN working group has proposed a Static Context Header Compression (SCHC) scheme that permits compression and fragmentation of and IPv6/UDP/CoAP packets with the aim of making them suitable for transmission over the restricted links of LPWANs. Given the impact that such a solution can have in many IoT scenarios, this paper addresses its real evaluation in terms not only of latency and delivery ratio improvements, as a consequence of different compression and fragmentation levels, but also of the overhead in end node resources and useful payload sent per fragment. This has been carried out with the implementation of middleware and using a real testbed implementation of a LoRaWAN-to-IPv6 architecture together with a publish/subscribe broker for CoAP. The attained results show the advantages of SCHC, and sustain discussion regarding the impact of different SCHC and LoRaWAN configurations on the performance. It is highlighted that necessary end node resources are low as compared to the benefit of delivering long IPv6 packets over the LPWAN links. In turn, fragmentation can impose a lack of efficiency in terms of data and energy and, hence, a cross-layer solution is needed in order to obtain the best throughput of the network.


2021 ◽  
Author(s):  
poonam Maurya ◽  
Aatmjeet Singh ◽  
Arzad Alam Kherani

Abstract Proper cell designing is required to achieve a target system performance in Long Range Wide Area Network (LoRaWAN). This paper addresses a suitable selection of network designing parameters problem, such as the dimension of different spreading factors’ annuli (zones or SF boundaries) in a LoRaWAN cell. We propose a mathematical framework for designing the LoRaWAN network. The main objective is to ensure that distributed end devices in the network can have the same success probability, irrespective of the spreading factor usage and their locations, unlike Equal Area Based (EAB) based network. We further enhance the performance of the network based on the proposed dimensions by adopting the k-tolerance algorithm. When the network follows the proposed dimensions, simulation results show an improvement in overall success probability over the traditional EAB scheme. In the later part of the paper, we address urbanization issues that degrade the system performance. In our approach to recoup the degradation in the system performance, we implement k−tolerance algorithm in the network.


2014 ◽  
Vol 960-961 ◽  
pp. 841-844
Author(s):  
Yan Bin Li ◽  
Yun Li ◽  
Wei Guo Li

With the development of the smart grid , information network securityassessment affects the safe operation of the smart grid . In this paper, theimproved credibility theory and analytic hierarchy process , combined withstructural features of the smart grid network , From the wide area network ,access network, enterprise local network , local area network and the CPN-siteand home users to assess the impact of the five aspects of information networksfor smart grid security operation. And make the case for more security strategyto improve the reliability of the smart grid operation , thus providing a basisfor guiding the development and safe use of electricity grid users .


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1008 ◽  
Author(s):  
Seungku Kim ◽  
Heonkook Lee ◽  
Sungho Jeon

When the low power wide area network (LPWAN) was developed for the internet of things (IoT), it attracted significant attention. LoRa, which is one of the LPWAN technologies, provides low-power and long-range wireless communication using a frequency band under 1 GHz. A long-range wide area network (LoRaWAN) provides a simple star topology network that is not scalable; it supports multi-data rates by adjusting the spreading factor, code rate, and bandwidth. This paper proposes an adaptive spreading factor selection scheme for corresponding spreading factors (SFs) between a transmitter and receiver. The scheme enables the maximum throughput and minimum network cost, using cheap single channel LoRa modules. It provides iterative SF inspection and an SF selection algorithm that allows each link to communicate at independent data rates. We implemented a multi-hop LoRa network and evaluated the performance of experiments in various network topologies. The adaptive spreading factor selection (ASFS) scheme showed outstanding end-to-end throughput, peaking at three times the performance of standalone modems. We expect the ASFS scheme will be a suitable technology for applications requiring high throughput on a multi-hop network.


2018 ◽  
Vol 7 (4.11) ◽  
pp. 212 ◽  
Author(s):  
Amir Muaz Abdul Rahman ◽  
Fadhlan Hafizhelmi Kamaru Kamaru Zaman ◽  
Syahrul Afzal Che Abdullah

This paper was dedicated to study the performance of an Internet of Things (IoT) application using LoRa Wide Area Network (LoRaWAN). LoRa is a Low Power Wide Area Network (LPWAN) technology developed for IoT applications specifically. Due to the facts that LoRa is a new product, there are questions about its reliability. Hence, a conclusive experiment has been made. The experiment conducted to get an insight to LoRa received signal strength (RSSI) and packet loss. The analysis also includes a measurement of the application Signal to Noise Ratio (SNR) between the transmitter and receiver. The results of the experiment show that with a higher spreading factor, LoRa end device provides more immunity against multi-path and signal fading. The proposed IoT application based on this LoRa technology is for autonomous vehicle status information transmission and intervehicle communications, specifically deployed in UiTM Autonomous Vehicle 1 (UiTM AV1).  


Author(s):  
Ala Khalifeh ◽  
Khaled Aldahdouh ◽  
Sahel Alouneh

Long Range Wide Area Network (LoRaWAN) is an emerging wireless technology that is expected to be widely deployed and implemented in several applications, especially with the promising widespread use of the Internet of Things (IoT) and its potential applications within the Fifth Generation (5G) communication technology. LoRaWAN consists of a number of nodes that monitors and senses the environment to collect specific data, and then sends the collected data to a remote monitoring device for further processing and decision-making. Energy consumption and security assurance are two vital factors needed to be optimized to ensure an efficient and reliable network operation and performance. To achieve that, each of LoRaWAN nodes can be configured by five transmission parameters, which are the spreading factor, carrier frequency, bandwidth, coding rate and transmission power. Choosing the best values of these parameters leads to enhancing the network deployment. In this paper, we shed the light to the security aspect in LoRaWAN network. Then, we introduced an algorithm that depends on the reinforcement learning approach to enable each node in the network to choose the best values of spreading factor and transmission power such that it leads to a lower energy consumption and higher packets’ delivery rate. The results of the simulation experiments of our proposed technique showed a valuable increase in the packet reception rate at the gateway and a significant decrease in the total consumed energy at the end nodes compared with the most related work in literature


2021 ◽  
Author(s):  
Hajer Tounsi ◽  
Norhane Benkahla ◽  
Ye-Qiong Song ◽  
Mounir Frikha

Abstract Long Range Wide Area Network (LoRaWAN) enables flexible long-range communication with low power consumption which is suitable for IoT applications. LoRaWAN’s performance is due on the one hand to its spreading factor modulation allowing the spread out of communication between end-devices and gateways on different frequency channels and data rates. And on the other hand, to the ability to manage for each node its data rate and its transmission power thanks to the adaptive data rate (ADR) scheme in order to increase the overall network capacity and to maximize the battery life of end devices. However, because of the Aloha access technique adopted by LoRaWAN, the risk of using the same data rate on the same channel is not negligible. Despite the limitation of the duty cycle for each node, the risk of collision is high with the increase of the number of end devices which degrades the LoRaWAN’s performance. In this context, our paper proposes different approaches to improve the performance of LoRaWAN. The first contribution consists in improving the ADR technique to meet the characteristics of a mobile environment. The new mechanism proposed, called VHMM-based E-ADR, consists of adapting the data rate of the end-device according to its position. The second contribution consists in better managing the use of the duty cycle by proposing a dynamic sharing mechanism (Dynamic Duty-Cycle). The last contribution consists in proposing a deterministic access technique to replace Aloha. Our experimental study has shown that our proposals give better results in terms of Packet Delivery Ratio (PDR) and energy consumption than basic LoRaWAN in a mobile environment.


2021 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Mohammad Al mojamed

A long-range wide-area network (LoRaWAN) targets both mobile and static Internet of Things (IoT) applications; it is suited to IoT applications, which require a large coverage area while consuming less power at a low data rate; it provides a solution for transferring data between IoT devices with a minimum cost in terms of power, at the expense of higher latency. LoRaWAN was designed for static low-power long-range networks. However, several IoT solution applications involve the use of mobility. Therefore, this study investigates the usage of LoRaWAN in the field of mobile Internet of Things applications such as bike rentals, fleet monitoring, and wildlife and animal tracking applications. Using the OMNeT++ simulator, two different well-known mobility models are used to investigate the influence of mobility on the performance of mobile LoRaWAN. The results show that intense LoRaWAN networks can operate under a high velocity and varying traffic load. It can be observed that the random waypoint model combination yields a better performance, but at the cost of higher collisions and energy consumption. As a consequence, the results suggest the reconsideration of mobile IoT solutions over LoRaWAN.


Sign in / Sign up

Export Citation Format

Share Document