scholarly journals On the Use of LoRaWAN for Mobile Internet of Things: The Impact of Mobility

2021 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Mohammad Al mojamed

A long-range wide-area network (LoRaWAN) targets both mobile and static Internet of Things (IoT) applications; it is suited to IoT applications, which require a large coverage area while consuming less power at a low data rate; it provides a solution for transferring data between IoT devices with a minimum cost in terms of power, at the expense of higher latency. LoRaWAN was designed for static low-power long-range networks. However, several IoT solution applications involve the use of mobility. Therefore, this study investigates the usage of LoRaWAN in the field of mobile Internet of Things applications such as bike rentals, fleet monitoring, and wildlife and animal tracking applications. Using the OMNeT++ simulator, two different well-known mobility models are used to investigate the influence of mobility on the performance of mobile LoRaWAN. The results show that intense LoRaWAN networks can operate under a high velocity and varying traffic load. It can be observed that the random waypoint model combination yields a better performance, but at the cost of higher collisions and energy consumption. As a consequence, the results suggest the reconsideration of mobile IoT solutions over LoRaWAN.

Author(s):  
Deniz TAŞKIN ◽  
Selçuk YAZAR

The Internet of Things (IoT) applications has been developing greatly in recent years to solve communication problems, especially in rural areas. Within the IoT, the context-awareness paradigm, especially in precision agricultural practices, has come to a state of the planning of production time. As smart cities approach, the smart environment approach also increases its place in IoT applications and has dominated research in recent years in literature. In this study, soil and environmental information were collected in 17 km diameter in rural area with developed Long Range (LoRa) based context-aware platform. With the developed sensor and actuator control unit, soil moisture at 5 cm and 30 cm depth and soil surface temperature information were collected and the communication performance was investigated. During the study, the performance measurements of the developed Serial Peripheral Interface (SPI) enabled Long Range Wide Area Network (LoRaWAN) gateway were also performed.


Author(s):  
Olof Magnusson ◽  
Rikard Teodorsson ◽  
Joakim Wennerberg ◽  
Stig Arne Knoph

LoRaWAN (long-range wide-area network) is an emerging technology for the connection of internet of things (IoT) devices to the internet and can as such be an important part of decision support systems. In this technology, IoT devices are connected to the internet through gateways by using long-range radio signals. However, because LoRaWAN is an open network, anyone has the ability to connect an end device or set up a gateway. Thus, it is important that gateways are designed in such a way that their ability to be used maliciously is limited. This chapter covers relevant attacks against gateways and potential countermeasures against them. A number of different attacks were found in literature, including radio jamming, eavesdropping, replay attacks, and attacks against the implementation of what is called beacons in LoRaWAN. Countermeasures against these attacks are discussed, and a suggestion to improve the security of LoRaWAN is also included.


BWK ENERGIE. ◽  
2019 ◽  
Vol 71 (05) ◽  
pp. 24-25
Author(s):  
Steffen Heudtlaß

INTERNET OF THINGS | Ob Smart Home, Smart Building oder Smart City – Stadtwerke sollten die neuen Betätigungsfelder mithilfe der Long-Range-Wide-Area-Network (LoRaWAN)-Funktechnologie rasch besetzen, rät Steffen Heudtlaß, bei der MeterPan GmbH verantwortlicher Geschäftsentwickler. Das Unternehmen aus Norderstedt unterstützt Versorger beim Schritt in die Welt des Internet of Things (IoT).


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 909 ◽  
Author(s):  
Zheng Zhang ◽  
Shouqi Cao ◽  
Yuntengyao Wang

Wireless communications for applications of inshore fishery and large area aquatic environmental monitoring are really challenging, due to the characteristics of a long monitoring period, large coverage area, and adverse transmission conditions. Recently, LPWAN (low-power wide-area network) became the new solution to address these challenges, due to its long transmission distance and low power consumption of end-nodes. In this paper, we designed a novel network system for aquatic environmental monitoring, based on long-range 2.4G technology, which consisted of a low cost dual-channel gateway and end-nodes. A DMSF (dual-channel multiple spreading factors)–TDMA (time division multiple access) MAC (medium access control) scheme for this system was proposed, which largely reduces the channel collision probability, and improves the real-time for urgent data and the average lifetime of end-nodes. We verified the applicability of the long-range 2.4G technology in an aquatic environment, by point-to-point communication experiments over lake water. The performance evaluation and analysis of DMSF–TDMA is presented through simulations, and comparison with other existing schemes. The results demonstrated the benefit of our proposed scheme, in terms of the packet delivery rate, delay, and energy consumption.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4336
Author(s):  
Nagib Matni ◽  
Jean Moraes ◽  
Helder Oliveira ◽  
Denis Rosário ◽  
Eduardo Cerqueira

Extended Range Wide Area Network (LoRaWAN) has recently gained a lot of attention from the industrial and research community for dynamic Internet of Things (IoT) applications. IoT devices broadcast messages for neighbor gateways that deliver the message to the application server through an IP network. Hence, it is required to deploy LoRaWAN gateways, i.e., network planning, and optimization, in an environment while considering Operational Expenditure (OPEX) and Capital Expenditure (CAPEX) along with Quality of Service (QoS) requirements. In this article, we introduced a LoRaWAN gateway placement model for dynamic IoT applications called DPLACE. It divides the IoT devices into groups with some degree of similarity between them to allow for the placement of LoRaWAN gateways that can serve these devices in the best possible way. Specifically, DPLACE computes the number of LoRaWAN gateways based on the Gap statistics method. Afterward, DPLACE uses K-Means and Fuzzy C-means algorithms to calculate the LoRaWAN gateway placement. The simulations’ results proved the benefits of DPLACE compared to state-of-the-art LoRaWAN gateway placement models in terms of OPEX, CAPEX, and QoS.


BWK ENERGIE. ◽  
2019 ◽  
Vol 71 (01-02) ◽  
pp. 14-14

SMART CITY | Internet-of-Things (IoT)-Technologien wie Long Range Wide Area Network (LoRaWAN) erobern die Städte. Ein klassisches Einsatzfeld ist die Parkraumüberwachung. Die Funklösung kann beispielsweise zuverlässig verhindern, dass Falschparker im Ernstfall Rettungswege oder Feuerwehrzufahrten von Gebäuden und öffentlichen Einrichtungen blockieren.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6466 ◽  
Author(s):  
Arshad Farhad ◽  
Dae-Ho Kim ◽  
Santosh Subedi ◽  
Jae-Young Pyun

A long-range wide area network (LoRaWAN) is one of the leading communication technologies for Internet of Things (IoT) applications. In order to fulfill the IoT-enabled application requirements, LoRaWAN employs an adaptive data rate (ADR) mechanism at both the end device (ED) and the network server (NS). NS-managed ADR aims to offer a reliable and battery-efficient resource to EDs by managing the spreading factor (SF) and transmit power (TP). However, such management is severely affected by the lack of agility in adapting to the variable channel conditions. Thus, several hours or even days may be required to converge at a level of stable and energy-efficient communication. Therefore, we propose two NS-managed ADRs, a Gaussian filter-based ADR (G-ADR) and an exponential moving average-based ADR (EMA-ADR). Both of the proposed schemes operate as a low-pass filter to resist rapid changes in the signal-to-noise ratio of received packets at the NS. The proposed methods aim to allocate the best SF and TP to both static and mobile EDs by seeking to reduce the convergence period in the confirmed mode of LoRaWAN. Based on the simulation results, we show that the G-ADR and EMA-ADR schemes reduce the convergence period in a static scenario by 16% and 68%, and in a mobility scenario by 17% and 81%, respectively, as compared to typical ADR. Moreover, we show that the proposed schemes are successful in reducing the energy consumption and enhancing the packet success ratio.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5614
Author(s):  
Khola Anwar ◽  
Taj Rahman ◽  
Asim Zeb ◽  
Yousaf Saeed ◽  
Muhammad Adnan Khan ◽  
...  

A Long-Range Wide Area Network (LoRaWAN) is one of the most efficient technologies and is widely adopted for the Internet of Things (IoT) applications. The IoT consists of massive End Devices (EDs) deployed over large geographical areas, forming a large environment. LoRaWAN uses an Adaptive Data Rate (ADR), targeting static EDs. However, the ADR is affected when the channel conditions between ED and Gateway (GW) are unstable due to shadowing, fading, and mobility. Such a condition causes massive packet loss, which increases the convergence time of the ADR. Therefore, we address the convergence time issue and propose a novel ADR at the network side to lower packet losses. The proposed ADR is evaluated through extensive simulation. The results show an enhanced convergence time compared to the state-of-the-art ADR method by reducing the packet losses and retransmission under dynamic mobile LoRaWAN network.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


Sign in / Sign up

Export Citation Format

Share Document