scholarly journals A Novel Method to Identify Pneumonia through Analyzing Chest Radiographs Employing a Multichannel Convolutional Neural Network

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3482
Author(s):  
Abdullah-Al Nahid ◽  
Niloy Sikder ◽  
Anupam Kumar Bairagi ◽  
Md. Abdur Razzaque ◽  
Mehedi Masud ◽  
...  

Pneumonia is a virulent disease that causes the death of millions of people around the world. Every year it kills more children than malaria, AIDS, and measles combined and it accounts for approximately one in five child-deaths worldwide. The invention of antibiotics and vaccines in the past century has notably increased the survival rate of Pneumonia patients. Currently, the primary challenge is to detect the disease at an early stage and determine its type to initiate the appropriate treatment. Usually, a trained physician or a radiologist undertakes the task of diagnosing Pneumonia by examining the patient’s chest X-ray. However, the number of such trained individuals is nominal when compared to the 450 million people who get affected by Pneumonia every year. Fortunately, this challenge can be met by introducing modern computers and improved Machine Learning techniques in Pneumonia diagnosis. Researchers have been trying to develop a method to automatically detect Pneumonia using machines by analyzing and the symptoms of the disease and chest radiographic images of the patients for the past two decades. However, with the development of cogent Deep Learning algorithms, the formation of such an automatic system is very much within the realms of possibility. In this paper, a novel diagnostic method has been proposed while using Image Processing and Deep Learning techniques that are based on chest X-ray images to detect Pneumonia. The method has been tested on a widely used chest radiography dataset, and the obtained results indicate that the model is very much potent to be employed in an automatic Pneumonia diagnosis scheme.

Covid-19 ◽  
2021 ◽  
pp. 241-278
Author(s):  
Parag Verma ◽  
Ankur Dumka ◽  
Alaknanda Ashok ◽  
Amit Dumka ◽  
Anuj Bhardwaj

2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yar Muhammad ◽  
Mohammad Dahman Alshehri ◽  
Wael Mohammed Alenazy ◽  
Truong Vinh Hoang ◽  
Ryan Alturki

Pneumonia is a very common and fatal disease, which needs to be identified at the initial stages in order to prevent a patient having this disease from more damage and help him/her in saving his/her life. Various techniques are used for the diagnosis of pneumonia including chest X-ray, CT scan, blood culture, sputum culture, fluid sample, bronchoscopy, and pulse oximetry. Medical image analysis plays a vital role in the diagnosis of various diseases like MERS, COVID-19, pneumonia, etc. and is considered to be one of the auspicious research areas. To analyze chest X-ray images accurately, there is a need for an expert radiologist who possesses expertise and experience in the desired domain. According to the World Health Organization (WHO) report, about 2/3 people in the world still do not have access to the radiologist, in order to diagnose their disease. This study proposes a DL framework to diagnose pneumonia disease in an efficient and effective manner. Various Deep Convolutional Neural Network (DCNN) transfer learning techniques such as AlexNet, SqueezeNet, VGG16, VGG19, and Inception-V3 are utilized for extracting useful features from the chest X-ray images. In this study, several machine learning (ML) classifiers are utilized. The proposed system has been trained and tested on chest X-ray and CT images dataset. In order to examine the stability and effectiveness of the proposed system, different performance measures have been utilized. The proposed system is intended to be beneficial and supportive for medical doctors to accurately and efficiently diagnose pneumonia disease.


Author(s):  
Mohammed Y. Kamil

COVID-19 disease has rapidly spread all over the world at the beginning of this year. The hospitals' reports have told that low sensitivity of RT-PCR tests in the infection early stage. At which point, a rapid and accurate diagnostic technique, is needed to detect the Covid-19. CT has been demonstrated to be a successful tool in the diagnosis of disease. A deep learning framework can be developed to aid in evaluating CT exams to provide diagnosis, thus saving time for disease control. In this work, a deep learning model was modified to Covid-19 detection via features extraction from chest X-ray and CT images. Initially, many transfer-learning models have applied and comparison it, then a VGG-19 model was tuned to get the best results that can be adopted in the disease diagnosis. Diagnostic performance was assessed for all models used via the dataset that included 1000 images. The VGG-19 model achieved the highest accuracy of 99%, sensitivity of 97.4%, and specificity of 99.4%. The deep learning and image processing demonstrated high performance in early Covid-19 detection. It shows to be an auxiliary detection way for clinical doctors and thus contribute to the control of the pandemic.


Author(s):  
Anshul, Et. al.

COVID-19 virus belongs to the severe acute respiratory syndrome (SARS) family raised a situation of health emergency in almost all the countries of the world. Numerous machine learning and deep learning based techniques are used to diagnose COVID positive patients using different image modalities like CT SCAN, X-RAY, or CBX, etc. This paper provides the works done in COVID-19 diagnosis, the role of ML and DL based methods to solve this problem, and presents limitations with respect to COVID-19 diagnosis.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 518 ◽  
Author(s):  
Hafsa Khalid ◽  
Muzammil Hussain ◽  
Mohammed A. Al Ghamdi ◽  
Tayyaba Khalid ◽  
Khadija Khalid ◽  
...  

The purpose of this research was to provide a “systematic literature review” of knee bone reports that are obtained by MRI, CT scans, and X-rays by using deep learning and machine learning techniques by comparing different approaches—to perform a comprehensive study on the deep learning and machine learning methodologies to diagnose knee bone diseases by detecting symptoms from X-ray, CT scan, and MRI images. This study will help those researchers who want to conduct research in the knee bone field. A comparative systematic literature review was conducted for the accomplishment of our work. A total of 32 papers were reviewed in this research. Six papers consist of X-rays of knee bone with deep learning methodologies, five papers cover the MRI of knee bone using deep learning approaches, and another five papers cover CT scans of knee bone with deep learning techniques. Another 16 papers cover the machine learning techniques for evaluating CT scans, X-rays, and MRIs of knee bone. This research compares the deep learning methodologies for CT scan, MRI, and X-ray reports on knee bone, comparing the accuracy of each technique, which can be used for future development. In the future, this research will be enhanced by comparing X-ray, CT-scan, and MRI reports of knee bone with information retrieval and big data techniques. The results show that deep learning techniques are best for X-ray, MRI, and CT scan images of the knee bone to diagnose diseases.


2019 ◽  
Author(s):  
Rushikesh Chavan ◽  
Jidnasa Pillai ◽  
Shravani Holkar ◽  
Prajyot Salgaonkar ◽  
Prakash Bhise

2019 ◽  
Author(s):  
Lu Liu ◽  
Ahmed Elazab ◽  
Baiying Lei ◽  
Tianfu Wang

BACKGROUND Echocardiography has a pivotal role in the diagnosis and management of cardiovascular diseases since it is real-time, cost-effective, and non-invasive. The development of artificial intelligence (AI) techniques have led to more intelligent and automatic computer-aided diagnosis (CAD) systems in echocardiography over the past few years. Automatic CAD mainly includes classification, detection of anatomical structures, tissue segmentation, and disease diagnosis, which are mainly completed by machine learning techniques and the recent developed deep learning techniques. OBJECTIVE This review aims to provide a guide for researchers and clinicians on relevant aspects of AI, machine learning, and deep learning. In addition, we review the recent applications of these methods in echocardiography and identify how echocardiography could incorporate AI in the future. METHODS This paper first summarizes the overview of machine learning and deep learning. Second, it reviews current use of AI in echocardiography by searching literature in the main databases for the past 10 years and finally discusses potential limitations and challenges in the future. RESULTS AI has showed promising improvements in analysis and interpretation of echocardiography to a new stage in the fields of standard views detection, automated analysis of chamber size and function, and assessment of cardiovascular diseases. CONCLUSIONS Compared with machine learning, deep learning methods have achieved state-of-the-art performance across different applications in echocardiography. Although there are challenges such as the required large dataset, AI can provide satisfactory results by devising various strategies. We believe AI has the potential to improve accuracy of diagnosis, reduce time consumption, and decrease the load of cardiologists.


Sign in / Sign up

Export Citation Format

Share Document