scholarly journals Hybrid SVM-CNN Classification Technique for Human–Vehicle Targets in an Automotive LFMCW Radar

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3504 ◽  
Author(s):  
Qisong Wu ◽  
Teng Gao ◽  
Zhichao Lai ◽  
Dianze Li

Human–vehicle classification is an essential component to avoiding accidents in autonomous driving. The classification technique based on the automotive radar sensor has been paid more attention by related researchers, owing to its robustness to low-light conditions and severe weather. In the paper, we propose a hybrid support vector machine–convolutional neural network (SVM-CNN) approach to address the class-imbalance classification of vehicles and pedestrians with limited experimental radar data available. A two-stage scheme with the combination of feature-based SVM technique and deep learning-based CNN is employed. In the first stage, the modified SVM technique based on these distinct physical features is firstly used to recognize vehicles to effectively alleviate the imbalance ratio of vehicles to pedestrians in the data level. Then, the residual unclassified images will be used as inputs to the deep network for the subsequent classification, and we introduce a weighted false error function into deep network architectures to enhance the class-imbalance classification performance at the algorithm level. The proposed SVM-CNN approach takes full advantage of both the locations of underlying class in the entire Range-Doppler image and automatical local feature learning in the CNN with sliding filter bank to improve the classification performance. Experimental results demonstrate the superior performances of the proposed method with the F 1 score of 0.90 and area under the curve (AUC) of the receiver operating characteristic (ROC) of 0.99 over several state-of-the-art methods with limited experimental radar data available in a 77 GHz automotive radar.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2897 ◽  
Author(s):  
Woosuk Kim ◽  
Hyunwoong Cho ◽  
Jongseok Kim ◽  
Byungkwan Kim ◽  
Seongwook Lee

This paper proposes a method to simultaneously detect and classify objects by using a deep learning model, specifically you only look once (YOLO), with pre-processed automotive radar signals. In conventional methods, the detection and classification in automotive radar systems are conducted in two successive stages; however, in the proposed method, the two stages are combined into one. To verify the effectiveness of the proposed method, we applied it to the actual radar data measured using our automotive radar sensor. According to the results, our proposed method can simultaneously detect targets and classify them with over 90% accuracy. In addition, it shows better performance in terms of detection and classification, compared with conventional methods such as density-based spatial clustering of applications with noise or the support vector machine. Moreover, the proposed method especially exhibits better performance when detecting and classifying a vehicle with a long body.



PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243907
Author(s):  
Kevin Teh ◽  
Paul Armitage ◽  
Solomon Tesfaye ◽  
Dinesh Selvarajah ◽  
Iain D. Wilkinson

One of the fundamental challenges when dealing with medical imaging datasets is class imbalance. Class imbalance happens where an instance in the class of interest is relatively low, when compared to the rest of the data. This study aims to apply oversampling strategies in an attempt to balance the classes and improve classification performance. We evaluated four different classifiers from k-nearest neighbors (k-NN), support vector machine (SVM), multilayer perceptron (MLP) and decision trees (DT) with 73 oversampling strategies. In this work, we used imbalanced learning oversampling techniques to improve classification in datasets that are distinctively sparser and clustered. This work reports the best oversampling and classifier combinations and concludes that the usage of oversampling methods always outperforms no oversampling strategies hence improving the classification results.



2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>



Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Gennaro Tartarisco ◽  
Giovanni Cicceri ◽  
Davide Di Pietro ◽  
Elisa Leonardi ◽  
Stefania Aiello ◽  
...  

In the past two decades, several screening instruments were developed to detect toddlers who may be autistic both in clinical and unselected samples. Among others, the Quantitative CHecklist for Autism in Toddlers (Q-CHAT) is a quantitative and normally distributed measure of autistic traits that demonstrates good psychometric properties in different settings and cultures. Recently, machine learning (ML) has been applied to behavioral science to improve the classification performance of autism screening and diagnostic tools, but mainly in children, adolescents, and adults. In this study, we used ML to investigate the accuracy and reliability of the Q-CHAT in discriminating young autistic children from those without. Five different ML algorithms (random forest (RF), naïve Bayes (NB), support vector machine (SVM), logistic regression (LR), and K-nearest neighbors (KNN)) were applied to investigate the complete set of Q-CHAT items. Our results showed that ML achieved an overall accuracy of 90%, and the SVM was the most effective, being able to classify autism with 95% accuracy. Furthermore, using the SVM–recursive feature elimination (RFE) approach, we selected a subset of 14 items ensuring 91% accuracy, while 83% accuracy was obtained from the 3 best discriminating items in common to ours and the previously reported Q-CHAT-10. This evidence confirms the high performance and cross-cultural validity of the Q-CHAT, and supports the application of ML to create shorter and faster versions of the instrument, maintaining high classification accuracy, to be used as a quick, easy, and high-performance tool in primary-care settings.



Author(s):  
Lucas D. Simoes ◽  
Bruna L. Souza ◽  
Hagi J. D. Costa ◽  
Rodrigo P. de Medeiros ◽  
V. S. Orivaldo ◽  
...  


2021 ◽  
Vol 11 (2) ◽  
pp. 796
Author(s):  
Alhanoof Althnian ◽  
Duaa AlSaeed ◽  
Heyam Al-Baity ◽  
Amani Samha ◽  
Alanoud Bin Dris ◽  
...  

Dataset size is considered a major concern in the medical domain, where lack of data is a common occurrence. This study aims to investigate the impact of dataset size on the overall performance of supervised classification models. We examined the performance of six widely-used models in the medical field, including support vector machine (SVM), neural networks (NN), C4.5 decision tree (DT), random forest (RF), adaboost (AB), and naïve Bayes (NB) on eighteen small medical UCI datasets. We further implemented three dataset size reduction scenarios on two large datasets and analyze the performance of the models when trained on each resulting dataset with respect to accuracy, precision, recall, f-score, specificity, and area under the ROC curve (AUC). Our results indicated that the overall performance of classifiers depend on how much a dataset represents the original distribution rather than its size. Moreover, we found that the most robust model for limited medical data is AB and NB, followed by SVM, and then RF and NN, while the least robust model is DT. Furthermore, an interesting observation is that a robust machine learning model to limited dataset does not necessary imply that it provides the best performance compared to other models.



Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1407
Author(s):  
Matyas Bukva ◽  
Gabriella Dobra ◽  
Juan Gomez-Perez ◽  
Krisztian Koos ◽  
Maria Harmati ◽  
...  

Investigating the molecular composition of small extracellular vesicles (sEVs) for tumor diagnostic purposes is becoming increasingly popular, especially for diseases for which diagnosis is challenging, such as central nervous system (CNS) malignancies. Thorough examination of the molecular content of sEVs by Raman spectroscopy is a promising but hitherto barely explored approach for these tumor types. We attempt to reveal the potential role of serum-derived sEVs in diagnosing CNS tumors through Raman spectroscopic analyses using a relevant number of clinical samples. A total of 138 serum samples were obtained from four patient groups (glioblastoma multiforme, non-small-cell lung cancer brain metastasis, meningioma and lumbar disc herniation as control). After isolation, characterization and Raman spectroscopic assessment of sEVs, the Principal Component Analysis–Support Vector Machine (PCA–SVM) algorithm was performed on the Raman spectra for pairwise classifications. Classification accuracy (CA), sensitivity, specificity and the Area Under the Curve (AUC) value derived from Receiver Operating Characteristic (ROC) analyses were used to evaluate the performance of classification. The groups compared were distinguishable with 82.9–92.5% CA, 80–95% sensitivity and 80–90% specificity. AUC scores in the range of 0.82–0.9 suggest excellent and outstanding classification performance. Our results support that Raman spectroscopic analysis of sEV-enriched isolates from serum is a promising method that could be further developed in order to be applicable in the diagnosis of CNS tumors.



Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 936
Author(s):  
Jianli Shao ◽  
Xin Liu ◽  
Wenqing He

Imbalanced data exist in many classification problems. The classification of imbalanced data has remarkable challenges in machine learning. The support vector machine (SVM) and its variants are popularly used in machine learning among different classifiers thanks to their flexibility and interpretability. However, the performance of SVMs is impacted when the data are imbalanced, which is a typical data structure in the multi-category classification problem. In this paper, we employ the data-adaptive SVM with scaled kernel functions to classify instances for a multi-class population. We propose a multi-class data-dependent kernel function for the SVM by considering class imbalance and the spatial association among instances so that the classification accuracy is enhanced. Simulation studies demonstrate the superb performance of the proposed method, and a real multi-class prostate cancer image dataset is employed as an illustration. Not only does the proposed method outperform the competitor methods in terms of the commonly used accuracy measures such as the F-score and G-means, but also successfully detects more than 60% of instances from the rare class in the real data, while the competitors can only detect less than 20% of the rare class instances. The proposed method will benefit other scientific research fields, such as multiple region boundary detection.



Author(s):  
Ke Wang ◽  
Qingwen Xue ◽  
Jian John Lu

Identifying high-risk drivers before an accident happens is necessary for traffic accident control and prevention. Due to the class-imbalance nature of driving data, high-risk samples as the minority class are usually ill-treated by standard classification algorithms. Instead of applying preset sampling or cost-sensitive learning, this paper proposes a novel automated machine learning framework that simultaneously and automatically searches for the optimal sampling, cost-sensitive loss function, and probability calibration to handle class-imbalance problem in recognition of risky drivers. The hyperparameters that control sampling ratio and class weight, along with other hyperparameters, are optimized by Bayesian optimization. To demonstrate the performance of the proposed automated learning framework, we establish a risky driver recognition model as a case study, using video-extracted vehicle trajectory data of 2427 private cars on a German highway. Based on rear-end collision risk evaluation, only 4.29% of all drivers are labeled as risky drivers. The inputs of the recognition model are the discrete Fourier transform coefficients of target vehicle’s longitudinal speed, lateral speed, and the gap between the target vehicle and its preceding vehicle. Among 12 sampling methods, 2 cost-sensitive loss functions, and 2 probability calibration methods, the result of automated machine learning is consistent with manual searching but much more computation-efficient. We find that the combination of Support Vector Machine-based Synthetic Minority Oversampling TEchnique (SVMSMOTE) sampling, cost-sensitive cross-entropy loss function, and isotonic regression can significantly improve the recognition ability and reduce the error of predicted probability.



Sign in / Sign up

Export Citation Format

Share Document