scholarly journals Spine Cop: Posture Correction Monitor and Assistant

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5376
Author(s):  
Pedro Ribeiro ◽  
Ana Rita Soares ◽  
Rafael Girão ◽  
Miguel Neto ◽  
Susana Cardoso

Back and spine-related issues are frequent maladies that most people have or will experience during their lifetime. A common and sensible observation that can be made is regarding the posture of an individual. We present a new approach that combines accelerometer, gyroscope, and magnetometer sensor data in combination with permanent magnets assembled as a wearable device capable of real-time spine posture monitoring. An independent calibration of the device is required for each user. The sensor data is processed by a probabilistic classification algorithm that compares the real-time data with the calibration result, verifying whether the data point lies within regions of confidence defined by a computed threshold. An incorrect posture classification is considered if both accelerometer and magnetometer classify the posture as incorrect. A pilot trial was performed in a single adult test subject. The combination of the magnets and magnetometer greatly improved the posture classification accuracy (89%) over the accuracy obtained when only accelerometer data were used (47%). The validation of this method was based on image analysis.

2021 ◽  
Author(s):  
Goedele Verreydt ◽  
Niels Van Putte ◽  
Timothy De Kleyn ◽  
Joris Cool ◽  
Bino Maiheu

<p>Groundwater dynamics play a crucial role in the spreading of a soil and groundwater contamination. However, there is still a big gap in the understanding of the groundwater flow dynamics. Heterogeneities and dynamics are often underestimated and therefore not taken into account. They are of crucial input for successful management and remediation measures. The bulk of the mass of mass often is transported through only a small layer or section within the aquifer and is in cases of seepage into surface water very dependent to rainfall and occurring tidal effects.</p><p> </p><p>This study contains the use of novel real-time iFLUX sensors to map the groundwater flow dynamics over time. The sensors provide real-time data on groundwater flow rate and flow direction. The sensor probes consist of multiple bidirectional flow sensors that are superimposed. The probes can be installed directly in the subsoil, riverbed or monitoring well. The measurement setup is unique as it can perform measurements every second, ideal to map rapid changing flow conditions. The measurement range is between 0,5 and 500 cm per day.</p><p> </p><p>We will present the measurement principles and technical aspects of the sensor, together with two case studies.</p><p> </p><p>The first case study comprises the installation of iFLUX sensors in 4 different monitoring wells in a chlorinated solvent plume to map on the one hand the flow patterns in the plume, and on the other hand the flow dynamics that are influenced by the nearby popular trees. The foreseen remediation concept here is phytoremediation. The sensors were installed for a period of in total 4 weeks. Measurement frequency was 5 minutes. The flow profiles and time series will be presented together with the determined mass fluxes.</p><p> </p><p>A second case study was performed on behalf of the remediation of a canal riverbed. Due to industrial production of tar and carbon black in the past, the soil and groundwater next to the small canal ‘De Lieve’ in Ghent, Belgium, got contaminated with aliphatic and (poly)aromatic hydrocarbons. The groundwater contaminants migrate to the canal, impact the surface water quality and cause an ecological risk. The seepage flow and mass fluxes of contaminants into the surface water were measured with the novel iFLUX streambed sensors, installed directly in the river sediment. A site conceptual model was drawn and dimensioned based on the sensor data. The remediation concept to tackle the inflowing pollution: a hydraulic conductive reactive mat on the riverbed that makes use of the natural draining function of the waterbody, the adsorption capacity of a natural or secondary adsorbent and a future habitat for micro-organisms that biodegrade contaminants. The reactive mats were successfully installed and based on the mass flux calculations a lifespan of at least 10 years is expected for the adsorption material.  </p>


2020 ◽  
Vol 12 (23) ◽  
pp. 10175
Author(s):  
Fatima Abdullah ◽  
Limei Peng ◽  
Byungchul Tak

The volume of streaming sensor data from various environmental sensors continues to increase rapidly due to wider deployments of IoT devices at much greater scales than ever before. This, in turn, causes massive increase in the fog, cloud network traffic which leads to heavily delayed network operations. In streaming data analytics, the ability to obtain real time data insight is crucial for computational sustainability for many IoT enabled applications such as environmental monitors, pollution and climate surveillance, traffic control or even E-commerce applications. However, such network delays prevent us from achieving high quality real-time data analytics of environmental information. In order to address this challenge, we propose the Fog Sampling Node Selector (Fossel) technique that can significantly reduce the IoT network and processing delays by algorithmically selecting an optimal subset of fog nodes to perform the sensor data sampling. In addition, our technique performs a simple type of query executions within the fog nodes in order to further reduce the network delays by processing the data near the data producing devices. Our extensive evaluations show that Fossel technique outperforms the state-of-the-art in terms of latency reduction as well as in bandwidth consumption, network usage and energy consumption.


2020 ◽  
Vol 10 (17) ◽  
pp. 5882
Author(s):  
Federico Desimoni ◽  
Sergio Ilarri ◽  
Laura Po ◽  
Federica Rollo ◽  
Raquel Trillo-Lado

Modern cities face pressing problems with transportation systems including, but not limited to, traffic congestion, safety, health, and pollution. To tackle them, public administrations have implemented roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. In the case of traffic sensor data not only the real-time data are essential, but also historical values need to be preserved and published. When real-time and historical data of smart cities become available, everyone can join an evidence-based debate on the city’s future evolution. The TRAFAIR (Understanding Traffic Flows to Improve Air Quality) project seeks to understand how traffic affects urban air quality. The project develops a platform to provide real-time and predicted values on air quality in several cities in Europe, encompassing tasks such as the deployment of low-cost air quality sensors, data collection and integration, modeling and prediction, the publication of open data, and the development of applications for end-users and public administrations. This paper explicitly focuses on the modeling and semantic annotation of traffic data. We present the tools and techniques used in the project and validate our strategies for data modeling and its semantic enrichment over two cities: Modena (Italy) and Zaragoza (Spain). An experimental evaluation shows that our approach to publish Linked Data is effective.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Supun Kamburugamuve ◽  
Leif Christiansen ◽  
Geoffrey Fox

We describe IoTCloud, a platform to connect smart devices to cloud services for real time data processing and control. A device connected to IoTCloud can communicate with real time data analysis frameworks deployed in the cloud via messaging. The platform design is scalable in connecting devices as well as transferring and processing data. With IoTCloud, a user can develop real time data processing algorithms in an abstract framework without concern for the underlying details of how the data is distributed and transferred. For this platform, we primarily consider real time robotics applications such as autonomous robot navigation, where there are strict requirements on processing latency and demand for scalable processing. To demonstrate the effectiveness of the system, a robotic application is developed on top of the framework. The system and the robotics application characteristics are measured to show that data processing in central servers is feasible for real time sensor applications.


TOS forum ◽  
2020 ◽  
Vol 2020 (10) ◽  
pp. 35
Author(s):  
Martin Lischka ◽  
André Mehling

Industrial operations are often based on critical quality measures obtained for technical process control and/or to determine the value of raw materials and product streams. Process Analytical Technology (PAT) monitoring is applied to characterise, for example, raw materials, semi-finished as well as finished products. There is an active interest in approaches for “smart” online, real-time industrial sensor applications, especially where industrial operations involve high sample throughput and/or may involve hazardous substances demanding automation. State-of-the-art sample preparation procedures and equipment can deliver key performances indicators, often supplemented by sensor data that are used as proxy quality measures which helps to ensure measurement representativity and optimal process/product control. We here illustrate this industrial front-line arena by an example in which PAT accelerometer data are used for real-time monitoring of the efficiency of the automated grinding sample preprocessing process.


2019 ◽  
Vol 8 (4) ◽  
pp. 167 ◽  
Author(s):  
Bartolomeo Ventura ◽  
Andrea Vianello ◽  
Daniel Frisinghelli ◽  
Mattia Rossi ◽  
Roberto Monsorno ◽  
...  

Finding a solution to collect, analyze, and share, in near real-time, data acquired by heterogeneous sensors, such as traffic, air pollution, soil moisture, or weather data, represents a great challenge. This paper describes the solution developed at Eurac Research to automatically upload data, in near real-time, by adopting Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) standards to guarantee interoperability. We set up a methodology capable of ingesting heterogeneous datasets to automatize observation uploading and sensor registration, with minimum interaction required of the user. This solution has been successfully tested and applied in the Long Term (Socio-)Ecological Research (LT(S)ER) Matsch-Mazia initiative, and the code is accessible under the CC BY 4.0 license.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
T. Vigneswari ◽  
M. A. Maluk Mohamed

Advances in microelectromechanical systems (MEMS) and nanotechnology have enabled design of low power wireless sensor nodes capable of sensing different vital signs in our body. These nodes can communicate with each other to aggregate data and transmit vital parameters to a base station (BS). The data collected in the base station can be used to monitor health in real time. The patient wearing sensors may be mobile leading to aggregation of data from different BS for processing. Processing real time data is compute-intensive and telemedicine facilities may not have appropriate hardware to process the real time data effectively. To overcome this, sensor grid has been proposed in literature wherein sensor data is integrated to the grid for processing. This work proposes a scheduling algorithm to efficiently process telemedicine data in the grid. The proposed algorithm uses the popular swarm intelligence algorithm for scheduling to overcome the NP complete problem of grid scheduling. Results compared with other heuristic scheduling algorithms show the effectiveness of the proposed algorithm.


2021 ◽  
Vol 13 (13) ◽  
pp. 7000
Author(s):  
Ulfia A. Lenfers ◽  
Nima Ahmady-Moghaddam ◽  
Daniel Glake ◽  
Florian Ocker ◽  
Daniel Osterholz ◽  
...  

The current trend towards living in big cities contributes to an increased demand for efficient and sustainable space and resource allocation in urban environments. This leads to enormous pressure for resource minimization in city planning. One pillar of efficient city management is a smart intermodal traffic system. Planning and organizing the various kinds of modes of transport in a complex and dynamically adaptive system such as a city is inherently challenging. By deliberately simplifying reality, models can help decision-makers shape the traffic systems of tomorrow. Meanwhile, Smart City initiatives are investing in sensors to observe and manage many kinds of urban resources, making up a part of the Internet of Things (IoT) that produces massive amounts of data relevant for urban planning and monitoring. We use these new data sources of smart cities by integrating real-time data of IoT sensors in an ongoing simulation. In this sense, the model is a digital twin of its real-world counterpart, being augmented with real-world data. To our knowledge, this is a novel instance of real-time correction during simulation of an agent-based model. The process of creating a valid mapping between model components and real-world objects posed several challenges and offered valuable insights, particularly when studying the interaction between humans and their environment. As a proof-of-concept for our implementation, we designed a showcase with bike rental stations in Hamburg-Harburg, a southern district of Hamburg, Germany. Our objective was to investigate the concept of real-time data correction in agent-based modeling, which we consider to hold great potential for improving the predictive capabilities of models. In particular, we hope that the chosen proof-of-concept informs the ongoing politically supported trends in mobility—away from individual and private transport and towards—in Hamburg.


2006 ◽  
Vol 53 (4-5) ◽  
pp. 375-382 ◽  
Author(s):  
O. Schraa ◽  
B. Tole ◽  
J.B. Copp

Interest in real-time model-based control is increasing as more and more facilities are being asked to meet stricter effluent requirements while at the same time minimizing costs. It has been identified that biological process models and automated process control technologies are being used at wastewater treatments plants throughout the world and that great potential for optimising biotreatment may exist with the integration of these two technology areas. According to our experience, wastewater treatment plants are indeed looking for ways to successfully integrate their modelling knowledge into their process control structure; however, there are practical aspects of this integration that must be addressed if the benefits of this integration are to be realised. This paper discusses the practical aspects of monitoring, filtering and analysing real sensor data with an aim to produce a reliable real-time data stream that might be used within a model-based control structure. Several real case study examples are briefly discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document