scholarly journals Combining Augmented Reality and 3D Printing to Improve Surgical Workflows in Orthopedic Oncology: Smartphone Application and Clinical Evaluation

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1370
Author(s):  
Rafael Moreta-Martinez ◽  
Alicia Pose-Díez-de-la-Lastra ◽  
José Antonio Calvo-Haro ◽  
Lydia Mediavilla-Santos ◽  
Rubén Pérez-Mañanes ◽  
...  

During the last decade, orthopedic oncology has experienced the benefits of computerized medical imaging to reduce human dependency, improving accuracy and clinical outcomes. However, traditional surgical navigation systems do not always adapt properly to this kind of interventions. Augmented reality (AR) and three-dimensional (3D) printing are technologies lately introduced in the surgical environment with promising results. Here we present an innovative solution combining 3D printing and AR in orthopedic oncological surgery. A new surgical workflow is proposed, including 3D printed models and a novel AR-based smartphone application (app). This app can display the patient’s anatomy and the tumor’s location. A 3D-printed reference marker, designed to fit in a unique position of the affected bone tissue, enables automatic registration. The system has been evaluated in terms of visualization accuracy and usability during the whole surgical workflow. Experiments on six realistic phantoms provided a visualization error below 3 mm. The AR system was tested in two clinical cases during surgical planning, patient communication, and surgical intervention. These results and the positive feedback obtained from surgeons and patients suggest that the combination of AR and 3D printing can improve efficacy, accuracy, and patients’ experience.

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7824
Author(s):  
Mónica García-Sevilla ◽  
Rafael Moreta-Martinez ◽  
David García-Mato ◽  
Alicia Pose-Diez-de-la-Lastra ◽  
Rubén Pérez-Mañanes ◽  
...  

Patient-specific instruments (PSIs) have become a valuable tool for osteotomy guidance in complex surgical scenarios such as pelvic tumor resection. They provide similar accuracy to surgical navigation systems but are generally more convenient and faster. However, their correct placement can become challenging in some anatomical regions, and it cannot be verified objectively during the intervention. Incorrect installations can result in high deviations from the planned osteotomy, increasing the risk of positive resection margins. In this work, we propose to use augmented reality (AR) to guide and verify PSIs placement. We designed an experiment to assess the accuracy provided by the system using a smartphone and the HoloLens 2 and compared the results with the conventional freehand method. The results showed significant differences, where AR guidance prevented high osteotomy deviations, reducing maximal deviation of 54.03 mm for freehand placements to less than 5 mm with AR guidance. The experiment was performed in two versions of a plastic three-dimensional (3D) printed phantom, one including a silicone layer to simulate tissue, providing more realism. We also studied how differences in shape and location of PSIs affect their accuracy, concluding that those with smaller sizes and a homogeneous target surface are more prone to errors. Our study presents promising results that prove AR’s potential to overcome the present limitations of PSIs conveniently and effectively.


2021 ◽  
Vol 51 (2) ◽  
pp. E20
Author(s):  
Gorkem Yavas ◽  
Kadri Emre Caliskan ◽  
Mehmet Sedat Cagli

OBJECTIVE The aim of this study was to assess the precision and feasibility of 3D-printed marker–based augmented reality (AR) neurosurgical navigation and its use intraoperatively compared with optical tracking neuronavigation systems (OTNSs). METHODS Three-dimensional–printed markers for CT and MRI and intraoperative use were applied with mobile devices using an AR light detection and ranging (LIDAR) camera. The 3D segmentations of intracranial tumors were created with CT and MR images, and preoperative registration of the marker and pathology was performed. A patient-specific, surgeon-facilitated mobile application was developed, and a mobile device camera was used for neuronavigation with high accuracy, ease, and cost-effectiveness. After accuracy values were preliminarily assessed, this technique was used intraoperatively in 8 patients. RESULTS The mobile device LIDAR camera was found to successfully overlay images of virtual tumor segmentations according to the position of a 3D-printed marker. The targeting error that was measured ranged from 0.5 to 3.5 mm (mean 1.70 ± 1.02 mm, median 1.58 mm). The mean preoperative preparation time was 35.7 ± 5.56 minutes, which is longer than that for routine OTNSs, but the amount of time required for preoperative registration and the placement of the intraoperative marker was very brief compared with other neurosurgical navigation systems (mean 1.02 ± 0.3 minutes). CONCLUSIONS The 3D-printed marker–based AR neuronavigation system was a clinically feasible, highly precise, low-cost, and easy-to-use navigation technique. Three-dimensional segmentation of intracranial tumors was targeted on the brain and was clearly visualized from the skin incision to the end of surgery.


2019 ◽  
Author(s):  
Taoran Jiang ◽  
Dewang Yu ◽  
Yuqi Wang ◽  
Tao Zan ◽  
Shuyi Wang ◽  
...  

BACKGROUND Vascular localization is crucial for perforator flap transfer. Augmented reality offers a novel method to seamlessly combine real information with virtual objects created by computed tomographic angiography to help the surgeon “see through” the skin and precisely localize the perforator. The head-mounted display augmented reality system HoloLens (Microsoft) could facilitate augmented reality–based perforator localization for a more convenient and safe procedure. OBJECTIVE The aim of this study was to evaluate the precision of the HoloLens-based vascular localization system, as the most important performance indicator of a new localization system. METHODS The precision of the HoloLens-based vascular localization system was tested in a simulated operating room under different conditions with a three-dimensional (3D) printed model. The coordinates of five pairs of points on the vascular map that could be easily identified on the 3D printed model and virtual model were detected by a probe, and the distance between the corresponding points was calculated as the navigation error. RESULTS The mean errors were determined under different conditions, with a minimum error of 1.35 mm (SD 0.43) and maximum error of 3.18 mm (SD 1.32), which were within the clinically acceptable range. There were no significant differences in the errors obtained under different visual angles, different light intensities, or different states (static or motion). However, the error was larger when tested with light compared with that tested without light. CONCLUSIONS This precision evaluation demonstrated that the HoloLens system can precisely localize the perforator and potentially help the surgeon accomplish the operation. The authors recommend using HoloLens-based surgical navigation without light.


10.2196/16852 ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. e16852
Author(s):  
Taoran Jiang ◽  
Dewang Yu ◽  
Yuqi Wang ◽  
Tao Zan ◽  
Shuyi Wang ◽  
...  

Background Vascular localization is crucial for perforator flap transfer. Augmented reality offers a novel method to seamlessly combine real information with virtual objects created by computed tomographic angiography to help the surgeon “see through” the skin and precisely localize the perforator. The head-mounted display augmented reality system HoloLens (Microsoft) could facilitate augmented reality–based perforator localization for a more convenient and safe procedure. Objective The aim of this study was to evaluate the precision of the HoloLens-based vascular localization system, as the most important performance indicator of a new localization system. Methods The precision of the HoloLens-based vascular localization system was tested in a simulated operating room under different conditions with a three-dimensional (3D) printed model. The coordinates of five pairs of points on the vascular map that could be easily identified on the 3D printed model and virtual model were detected by a probe, and the distance between the corresponding points was calculated as the navigation error. Results The mean errors were determined under different conditions, with a minimum error of 1.35 mm (SD 0.43) and maximum error of 3.18 mm (SD 1.32), which were within the clinically acceptable range. There were no significant differences in the errors obtained under different visual angles, different light intensities, or different states (static or motion). However, the error was larger when tested with light compared with that tested without light. Conclusions This precision evaluation demonstrated that the HoloLens system can precisely localize the perforator and potentially help the surgeon accomplish the operation. The authors recommend using HoloLens-based surgical navigation without light.


Author(s):  
Yanyan Ma ◽  
Peng Ding ◽  
Lanlan Li ◽  
Yang Liu ◽  
Ping Jin ◽  
...  

AbstractHeart diseases remain the top threat to human health, and the treatment of heart diseases changes with each passing day. Convincing evidence shows that three-dimensional (3D) printing allows for a more precise understanding of the complex anatomy associated with various heart diseases. In addition, 3D-printed models of cardiac diseases may serve as effective educational tools and for hands-on simulation of surgical interventions. We introduce examples of the clinical applications of different types of 3D printing based on specific cases and clinical application scenarios of 3D printing in treating heart diseases. We also discuss the limitations and clinically unmet needs of 3D printing in this context.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Benedikt Mietner ◽  
Xuehe Jiang ◽  
Ulrica Edlund ◽  
Bodo Saake ◽  
Julien R. G. Navarro

AbstractIn this work, we present an approach to cross-link cellulose nanofibrils (CNFs) with various metallic cations (Fe3+, Al3+, Ca2+, and Mg2+) to produce inks suitable for three-dimensional (3D) printing application. The printability of each hydrogel ink was evaluated, and several parameters such as the optimal ratio of Mn+:TOCNF:H2O were discussed. CNF suspensions were produced by mechanical disintegration of cellulose pulp with a microfluidizer and then oxidized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Finally, metal cations were introduced to the deprotonated TEMPO-oxidized CNF (TOCNF) suspension to cross-link the nanofibrils and form the corresponding hydrogels. The performances of each gel-ink were evaluated by rheological measurements and 3D printing. Only the gels incorporated with divalent cations Ca2+ and Mg2+ were suitable for 3D printing. The 3D printed structures were freeze-dried and characterized with Fourier transform infrared spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). The better interaction of the TOCNFs with the divalent metallic cations in terms of printability, the viscoelastic properties of the inks, and the variation trends owing to various metal cations and ratios are discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sapam Ningthemba Singh ◽  
Vavilada Satya Swamy Venkatesh ◽  
Ashish Bhalchandra Deoghare

Purpose During the COVID-19 pandemic, the three-dimensional (3D) printing community is actively participating to address the supply chain gap of essential medical supplies such as face masks, face shields, door adapters, test swabs and ventilator valves. This paper aims to present a comprehensive study on the role of 3D printing during the coronavirus (COVID-19) pandemic, its safety and its challenges. Design/methodology/approach This review paper focuses on the applications of 3D printing in the fight against COVID-19 along with the safety and challenges associated with 3D printing to fight COVID-19. The literature presented in this paper is collected from the journal indexing engines including Scopus, Google Scholar, ResearchGate, PubMed, Web of Science, etc. The main keywords used for searches were 3D printing COVID-19, Safety of 3D printed parts, Sustainability of 3D printing, etc. Further possible iterations of the keywords were used to collect the literature. Findings The applications of 3D printing in the fight against COVID-19 are 3D printed face masks, shields, ventilator valves, test swabs, drug deliveries and hands-free door adapters. As most of these measures are implemented hastily, the safety and reliability of these parts often lacked approval. The safety concerns include the safety of the printed parts, operators and secondary personnel such as the workers in material preparation and transportation. The future challenges include sustainability of the process, long term supply chain, intellectual property and royalty-free models, etc. Originality/value This paper presents a comprehensive study on the applications of 3D printing in the fight against COVID-19 with emphasis on the safety and challenges in it.


Author(s):  
Azar Maalouf ◽  
Ronan Gingat ◽  
Vincent Laur

This study examines K-band rectangular waveguide terminations with three-dimensional (3D)-printed loads, and proposes an Asymmetrical Tapered Wedge topology. This geometry shows a good tradeoff between microwave performance and 3D-printing issues (printing directions and support material requirements), thus improving noticeably the reproducibility of the devices. The effect of the density of the 3D-printed load on the reflection parameter of the termination was investigated. Even for a low density, reflection level remained below −27.5 dB between 18 and 26.5 GHz. Reproducibility was demonstrated by the characterization of six loads that were 3D printed under the same conditions. Measurements demonstrate that a maximum reflection parameter level of −33.5 dB can be ensured over the whole frequency band without any post-machining of the 3D-printed devices.


Sign in / Sign up

Export Citation Format

Share Document