scholarly journals Examination of Driver Visual and Cognitive Responses to Billboard Elicited Passive Distraction Using Eye-Fixation Related Potential

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1471
Author(s):  
Yongxiang Wang ◽  
William Clifford ◽  
Charles Markham ◽  
Catherine Deegan

Distractions external to a vehicle contribute to visual attention diversion that may cause traffic accidents. As a low-cost and efficient advertising solution, billboards are widely installed on side of the road, especially the motorway. However, the effect of billboards on driver distraction, eye gaze, and cognition has not been fully investigated. This study utilises a customised driving simulator and synchronised electroencephalography (EEG) and eye tracking system to investigate the cognitive processes relating to the processing of driver visual information. A distinction is made between eye gaze fixations relating to stimuli that assist driving and others that may be a source of distraction. The study compares the driver’s cognitive responses to fixations on billboards with fixations on the vehicle dashboard. The measured eye-fixation related potential (EFRP) shows that the P1 components are similar; however, the subsequent N1 and P2 components differ. In addition, an EEG motor response is observed when the driver makes an adjustment of driving speed when prompted by speed limit signs. The experimental results demonstrate that the proposed measurement system is a valid tool in assessing driver cognition and suggests the cognitive level of engagement to the billboard is likely to be a precursor to driver distraction. The experimental results are compared with the human information processing model found in the literature.

Author(s):  
Michiko Ohkura ◽  
Kazuma Uchiumi ◽  
Yukou Saito ◽  
Koyo Hasegawa

According to the AAA Foundation for Traffic Safety, driver inattention is a major contributor to highway accidents. Driver distraction is one form of inattention and a leading factor in most vehicle crashes and near crashes. Distraction occurs when a driver is delayed in the recognition of information needed to safely accomplish the driving task because some event, activity, object, or person within or outside the vehicle compels or induces the driver attention away from the driving task. Although some indexes of driving performance have measured distraction, they are the results of the distraction and not the distraction itself. We directly and quantitatively employ biological signals to measure the distraction by finding useful biological indexes from candidates of various biological signals. Our experimental results using a driving simulator showed useful indexes derived from EEG and ECG.


Author(s):  
Nathan Hatfield ◽  
Yusuke Yamani ◽  
Dakota B. Palmer ◽  
Nicole D. Karpinsky ◽  
William J. Horrey ◽  
...  

Automated driving systems (ADS) partially or fully perform or assist with primary driving functions. According to SAE J3016 (SAE, 2016), ADS can subsume driving tasks traditionally reserved for humans, ranging from L0 (no automation) to L5 (full automation), creating varying degrees of driver interaction and responsibility. However, the literature on human-automation interaction indicates that human operators may perform at a suboptimal level when interacting with automated support systems (Parasuraman & Riley, 1997), reducing the net benefit that automation can bring while also simultaneously increasing the potential for unforeseen human errors. Yamani and Horrey (in press) proposed a theoretical framework of human-automation interaction building upon a human information-processing model (Wickens, Hollands, Banbury, & Parasuraman, 2013) that accounts for human performance when interacting with varying types and levels of automation (Parasuraman, Sheridan, & Wickens, 2000). Following the model by Yamani and Horrey (in press), we hypothesized that when the ADS is perceived to be reliable, drivers engaging with such systems (e.g. L2) would exhibit eye movements no better or worse than the drivers engaged with manual or L0 driving since the drivers allocate their reserved or spare resources to other driving-irrelevant activities such as mind wandering or task irrelevant thoughts (Yanko & Spalek, 2014). The current driving simulator study compared young drivers’ eye movements across four unique scenarios in either L0 or L2 driving systems. We asked participants to complete a three-phased skill-based training program (RAPT-3; see Unverricht, Samuel, & Yamani for review) proven effective to improve young drivers’ ability to anticipate latent hazards, immediately followed by the evaluation of their eye movements in either L0 or L2 systems using a head-mounted eye tracker and a driving simulator. Participants in the L2 condition were instructed that the system detects and mitigates existing and latent threats on the forward roadway while maintaining appropriate speed and lateral positioning for the duration of the drive. To ensure similarity between both systems, L2 participants were required to position their hands on the steering wheel and feet above the pedal. No hazards materialized in any of the four driving scenarios. Data showed similar breadths of eye movements for the drivers of the L2 and L0 systems both horizontally [M = 36.5 vs. 36.3 pixels; L2 and L0, respectively] and vertically [M = 26.9 vs. 34.5 pixels] and no difference in mean fixation durations [M = 367 vs. 333 ms for L2 and L0 conditions]. However, data indicated substantial differences between L0 and L2 conditions for number of fixations, with L2 drivers fixating less frequently than L0 drivers, [M = 687 vs. 796 fixations, t (22) = 2.53, B10 = 3.23]. The results imply that L2 drivers may sample information from the forward roadway less often than L0 drivers, suggesting the mobilization of spare resources for non-driving related tasks. Future research should examine the relationship between conveyed system reliability and attention allocation for drivers of ADS with different automation levels. In summary, the current results support Yamani and Horrey’s model and offer potential implications for the design of autonomous systems and the NHTSA automation guidelines to consider the perceived reliability of lower level ADS towards ascribing the role of the driver when the driving task is either partially or fully automated.


1992 ◽  
Vol 4 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Ken’ichi Kamijo ◽  
◽  
Shin’ichi Fukuzumi ◽  
Toshimasa Yamazaki

The authors propose a new Virtual Reality (VR) system using psychological and physiological data which reflect users’ mental state and voluntary and involuntary reactions. The VR system consists of a psychological and physiological data measurement system, human information processing model units, and an intelligent feedback system. This VR system can provide users with a more comfortable environment in virtual space. As a case study, the authors have applied the system to Sports CAI, in particular a Sports Image Training System for skiing, and an experimental prototype system has been developed. The system consists of weight measurement devices, ski scene display, and data display. According to the movement of the skier displayed on the screen, trainees can control their weight positioning for skiing. The system gives some instructions for improving skiing on the basis of weight data. The new image training method was realized by displaying psychological and physiological data in a virtual environment and by feedback of the data through real time visual information.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 741
Author(s):  
Yuseok Ban ◽  
Kyungjae Lee

Many researchers have suggested improving the retention of a user in the digital platform using a recommender system. Recent studies show that there are many potential ways to assist users to find interesting items, other than high-precision rating predictions. In this paper, we study how the diverse types of information suggested to a user can influence their behavior. The types have been divided into visual information, evaluative information, categorial information, and narrational information. Based on our experimental results, we analyze how different types of supplementary information affect the performance of a recommender in terms of encouraging users to click more items or spend more time in the digital platform.


Author(s):  
Federico Cassioli ◽  
Laura Angioletti ◽  
Michela Balconi

AbstractHuman–computer interaction (HCI) is particularly interesting because full-immersive technology may be approached differently by users, depending on the complexity of the interaction, users’ personality traits, and their motivational systems inclination. Therefore, this study investigated the relationship between psychological factors and attention towards specific tech-interactions in a smart home system (SHS). The relation between personal psychological traits and eye-tracking metrics is investigated through self-report measures [locus of control (LoC), user experience (UX), behavioral inhibition system (BIS) and behavioral activation system (BAS)] and a wearable and wireless near-infrared illumination based eye-tracking system applied to an Italian sample (n = 19). Participants were asked to activate and interact with five different tech-interaction areas with different levels of complexity (entrance, kitchen, living room, bathroom, and bedroom) in a smart home system (SHS), while their eye-gaze behavior was recorded. Data showed significant differences between a simpler interaction (entrance) and a more complex one (living room), in terms of number of fixation. Moreover, slower time to first fixation in a multifaceted interaction (bathroom), compared to simpler ones (kitchen and living room) was found. Additionally, in two interaction conditions (living room and bathroom), negative correlations were found between external LoC and fixation count, and between BAS reward responsiveness scores and fixation duration. Findings led to the identification of a two-way process, where both the complexity of the tech-interaction and subjects’ personality traits are important impacting factors on the user’s visual exploration behavior. This research contributes to understand the user responsiveness adding first insights that may help to create more human-centered technology.


Author(s):  
Alejandro A. Arca ◽  
Kaitlin M. Stanford ◽  
Mustapha Mouloua

The current study was designed to empirically examine the effects of individual differences in attention and memory deficits on driver distraction. Forty-eight participants consisting of 37 non-ADHD and 11 ADHD drivers were tested in a medium fidelity GE-ISIM driving simulator. All participants took part in a series of simulated driving scenarios involving both high and low traffic conditions in conjunction with completing a 20-Questions task either by text- message or phone-call. Measures of UFOV, simulated driving, heart rate variability, and subjective (NASA TLX) workload performance were recorded for each of the experimental tasks. It was hypothesized that ADHD diagnosis, type of cellular distraction, and traffic density would affect driving performance as measured by driving performance, workload assessment, and physiological measures. Preliminary results indicated that ADHD diagnosis, type of cellular distraction, and traffic density affected the performance of the secondary task. These results provide further evidence for the deleterious effects of cellphone use on driver distraction, especially for drivers who are diagnosed with attention-deficit and memory capacity deficits. Theoretical and practical implications are discussed, and directions for future research are also presented.


2021 ◽  
Vol 11 (7) ◽  
pp. 2987
Author(s):  
Takumi Okumura ◽  
Yuichi Kurita

Image therapy, which creates illusions with a mirror and a head mount display, assists movement relearning in stroke patients. Mirror therapy presents the movement of the unaffected limb in a mirror, creating the illusion of movement of the affected limb. As the visual information of images cannot create a fully immersive experience, we propose a cross-modal strategy that supplements the image with sensual information. By interacting with the stimuli received from multiple sensory organs, the brain complements missing senses, and the patient experiences a different sense of motion. Our system generates the sense of stair-climbing in a subject walking on a level floor. The force sensation is presented by a pneumatic gel muscle (PGM). Based on motion analysis in a human lower-limb model and the characteristics of the force exerted by the PGM, we set the appropriate air pressure of the PGM. The effectiveness of the proposed system was evaluated by surface electromyography and a questionnaire. The experimental results showed that by synchronizing the force sensation with visual information, we could match the motor and perceived sensations at the muscle-activity level, enhancing the sense of stair-climbing. The experimental results showed that the visual condition significantly improved the illusion intensity during stair-climbing.


Author(s):  
Ding Ding ◽  
Mark A Neerincx ◽  
Willem-Paul Brinkman

Abstract Virtual cognitions (VCs) are a stream of simulated thoughts people hear while emerged in a virtual environment, e.g. by hearing a simulated inner voice presented as a voice over. They can enhance people’s self-efficacy and knowledge about, for example, social interactions as previous studies have shown. Ownership and plausibility of these VCs are regarded as important for their effect, and enhancing both might, therefore, be beneficial. A potential strategy for achieving this is the synchronization of the VCs with people’s eye fixation using eye-tracking technology embedded in a head-mounted display. Hence, this paper tests this idea in the context of a pre-therapy for spider and snake phobia to examine the ability to guide people’s eye fixation. An experiment with 24 participants was conducted using a within-subjects design. Each participant was exposed to two conditions: one where the VCs were adapted to eye gaze of the participant and the other where they were not adapted, i.e. the control condition. The findings of a Bayesian analysis suggest that credibly more ownership was reported and more eye-gaze shift behaviour was observed in the eye-gaze-adapted condition than in the control condition. Compared to the alternative of no or negative mediation, the findings also give some more credibility to the hypothesis that ownership, at least partly, positively mediates the effect eye-gaze-adapted VCs have on eye-gaze shift behaviour. Only weak support was found for plausibility as a mediator. These findings help improve insight into how VCs affect people.


2009 ◽  
Vol 30 (12) ◽  
pp. 1144-1150 ◽  
Author(s):  
Diego Torricelli ◽  
Michela Goffredo ◽  
Silvia Conforto ◽  
Maurizio Schmid

Sign in / Sign up

Export Citation Format

Share Document