scholarly journals Gait Analysis Accuracy Difference with Different Dimensions of Flexible Capacitance Sensors

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5299
Author(s):  
DongWoo Nam ◽  
Bummo Ahn

Stroke causes neurological pathologies, including gait pathologies, which are diagnosed by gait analysis. However, existing gait analysis devices are difficult to use in situ or are disrupted by external conditions. To overcome these drawbacks, a flexible capacitance sensor was developed in this study. To date, a performance comparison of flexible sensors with different dimensions has not been carried out. The aim of this study was to provide optimized sensor dimension information for gait analysis. To accomplish this, sensors with seven different dimensions were fabricated. The dimensions of the sensors were based on the average body size and movement range of 20- to 59-year-old adults. The sensors were characterized by 100 oscillations. The minimum hysteresis error was 8%. After that, four subjects were equipped with the sensor and walked on a treadmill at a speed of 3.6 km/h. All walking processes were filmed at 50 fps and analyzed in Kinovea. The RMS error was calculated using the same frame rate of the video and the sampling rate of the signal from the sensor. The smallest RMS error between the sensor data and the ankle angle was 3.13° using the 49 × 8 mm sensor. In this study, we confirm the dimensions of the sensor with the highest gait analysis accuracy; therefore, the results can be used to make decisions regarding sensor dimensions.

2020 ◽  
Vol 54 (1) ◽  
pp. 13-24
Author(s):  
Qiaoling Gao ◽  
Jiawang Chen ◽  
Chunsheng Wang ◽  
Qinghua Sheng ◽  
Junyi Yang ◽  
...  

AbstractThe marine plankton temperature-retained and pressure-retained sampler is an innovative, deep-sea (maximum 6,000 m) sampler that is equipped with three trawls to obtain marine plankton samples at specified depths and with simultaneous collection of sensor data. The sampler can collect plankton horizontally near the seabed or vertically at different levels of water driven by an underwater fluid power system. The sampler is equipped with a temperature-retained and pressure-retained system to keep the obtained plankton alive when it is brought to the deck, which improves the effective sampling rate of the sampler. The sampler can be monitored in real time and controlled from the deck via a coaxial cable, such that operators onboard can choose the proper sampling location, control the attitude and the moving speed of the sampler, and collect pressure-retained plankton samples in different depths during one deployment. In its verification deployment in the South China Sea (longitude 111°11′´E, latitude 18°05′), the sampler was operated three times at depths of 1,200, 1,500, and 1,600 m. Some plankton samples with in-situ pressure retained have been successfully obtained and the pressure did not decrease after 24 h.


2020 ◽  
Vol 53 (2) ◽  
pp. 15990-15997
Author(s):  
Felix Laufer ◽  
Michael Lorenz ◽  
Bertram Taetz ◽  
Gabriele Bleser

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2727
Author(s):  
Hari Prasanth ◽  
Miroslav Caban ◽  
Urs Keller ◽  
Grégoire Courtine ◽  
Auke Ijspeert ◽  
...  

Gait analysis has traditionally been carried out in a laboratory environment using expensive equipment, but, recently, reliable, affordable, and wearable sensors have enabled integration into clinical applications as well as use during activities of daily living. Real-time gait analysis is key to the development of gait rehabilitation techniques and assistive devices such as neuroprostheses. This article presents a systematic review of wearable sensors and techniques used in real-time gait analysis, and their application to pathological gait. From four major scientific databases, we identified 1262 articles of which 113 were analyzed in full-text. We found that heel strike and toe off are the most sought-after gait events. Inertial measurement units (IMU) are the most widely used wearable sensors and the shank and foot are the preferred placements. Insole pressure sensors are the most common sensors for ground-truth validation for IMU-based gait detection. Rule-based techniques relying on threshold or peak detection are the most widely used gait detection method. The heterogeneity of evaluation criteria prevented quantitative performance comparison of all methods. Although most studies predicted that the proposed methods would work on pathological gait, less than one third were validated on such data. Clinical applications of gait detection algorithms were considered, and we recommend a combination of IMU and rule-based methods as an optimal solution.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2506
Author(s):  
Nguyen Hoai Ngo ◽  
Kazuhiro Shimonomura ◽  
Taeko Ando ◽  
Takayoshi Shimura ◽  
Heiji Watanabe ◽  
...  

A burst image sensor named Hanabi, meaning fireworks in Japanese, includes a branching CCD and multiple CMOS readout circuits. The sensor is backside-illuminated with a light/charge guide pipe to minimize the temporal resolution by suppressing the horizontal motion of signal carriers. On the front side, the pixel has a guide gate at the center, branching to six first-branching gates, each bifurcating to second-branching gates, and finally connected to 12 (=6×2) floating diffusions. The signals are either read out after an image capture operation to replay 12 to 48 consecutive images, or continuously transferred to a memory chip stacked on the front side of the sensor chip and converted to digital signals. A CCD burst image sensor enables a noiseless signal transfer from a photodiode to the in-situ storage even at very high frame rates. However, the pixel count conflicts with the frame count due to the large pixel size for the relatively large in-pixel CCD memory elements. A CMOS burst image sensor can use small trench-type capacitors for memory elements, instead of CCD channels. However, the transfer noise from a floating diffusion to the memory element increases in proportion to the square root of the frame rate. The Hanabi chip overcomes the compromise between these pros and cons.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2480
Author(s):  
Isidoro Ruiz-García ◽  
Ismael Navarro-Marchal ◽  
Javier Ocaña-Wilhelmi ◽  
Alberto J. Palma ◽  
Pablo J. Gómez-López ◽  
...  

In skiing it is important to know how the skier accelerates and inclines the skis during the turn to avoid injuries and improve technique. The purpose of this pilot study with three participants was to develop and evaluate a compact, wireless, and low-cost system for detecting the inclination and acceleration of skis in the field based on inertial measurement units (IMU). To that end, a commercial IMU board was placed on each ski behind the skier boot. With the use of an attitude and heading reference system algorithm included in the sensor board, the orientation and attitude data of the skis were obtained (roll, pitch, and yaw) by IMU sensor data fusion. Results demonstrate that the proposed IMU-based system can provide reliable low-drifted data up to 11 min of continuous usage in the worst case. Inertial angle data from the IMU-based system were compared with the data collected by a video-based 3D-kinematic reference system to evaluate its operation in terms of data correlation and system performance. Correlation coefficients between 0.889 (roll) and 0.991 (yaw) were obtained. Mean biases from −1.13° (roll) to 0.44° (yaw) and 95% limits of agreements from 2.87° (yaw) to 6.27° (roll) were calculated for the 1-min trials. Although low mean biases were achieved, some limitations arose in the system precision for pitch and roll estimations that could be due to the low sampling rate allowed by the sensor data fusion algorithm and the initial zeroing of the gyroscope.


2021 ◽  
Vol 9 (10) ◽  
pp. 6423-6431
Author(s):  
Xieji Lin ◽  
Yue Dong ◽  
Xiaohong Chen ◽  
Haiyan Liu ◽  
Zhaobin Liu ◽  
...  

It is the first time that metallasilsesquioxanes are introduced into the synthesis of porous carbon nanosheets. Lithium hepta(i-butyl)silsesquioxane trisilanolate is a multifunctional precursor for both carbon sources and templates with different dimensions.


Ocean Science ◽  
2005 ◽  
Vol 1 (1) ◽  
pp. 17-28 ◽  
Author(s):  
H. van Haren ◽  
R. Groenewegen ◽  
M. Laan ◽  
B. Koster

Abstract. A high sampling rate (1 Hz) thermistor string has been built to accommodate the scientific need to accurately monitor high-frequency and vigorous internal wave and overturning processes in the ocean. The thermistors and their custom designed electronics can register temperature at an estimated precision of about 0.001° C with a response time faster than 0.25 s down to depths of 6000 m. With a quick in situ calibration using SBE 911 CTD an absolute accuracy of 0.005° C is obtained. The present string holds 128 sensors at 0.5 m intervals, which are all read-out within 0.5 s. When sampling at 1 Hz, the batteries and the memory capacity of the recorder allow for deployments of up to 2 weeks. In this paper, the instrument is described in some detail. Its performance is illustrated with examples from the first moored observations, which show Kelvin-Helmholtz overturning and very high-frequency (Doppler-shifted) internal waves besides occasionally large turbulent bores moving up the sloping side of Great Meteor Seamount, Canary Basin, North-Atlantic Ocean.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Caixia Shao ◽  
Lili Xuan ◽  
Yingzhi Cao ◽  
Xiaojian Cui ◽  
Siyu Gao

A regional ocean reanalysis system of China coastal waters and adjacent seas, called CORA (China ocean reanalysis), has been recently developed at the National Marine Data and Information Service (NMDIS). In this study, based on CORA, the impact of Argo profiles on the regional reanalysis is evaluated using a twin-experiment approach. It is found that, by assimilating Argo observations, the reanalysis quality is much improved: the root mean square (RMS) error of temperature and salinity can be further reduced by about 10% and the RMS error of current can be further reduced by 18%, compared to the case only assimilating conventional in situ temperature and salinity observations. Consistent with the unique feature of Argo observations, the temperature is improved in all levels and the largest improvement of salinity happens in the deep ocean. Argo profile data have a significant impact on the regional ocean reanalysis through improvements of both hydrographic and dynamic fields.


Sign in / Sign up

Export Citation Format

Share Document